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Abstract
Assume a multi-server memoryless loss system. Each server is associated with a ser-

vice rate and a value of service. Customers from a common Poisson arrival process

are routed to the servers in an unobservable way, where the goal is to maximize the

long-run expected reward per customer (which is the service value times the proba-

bility that the customer is not blocked). We first solve this problem under two criteria:

social optimization and Nash equilibrium. Our main result is that the price of anar-

chy, defined as the ratio between the expected gain under the two criteria, is bounded

by 2. We also show, via examples, that this bound is tight for any number of servers.
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1 INTRODUCTION

Customers seek service due to its value. Yet, their net utility

might be a function not only of their own actions, but also

of the decisions made by the other customers. Consider, for

example, customers that choose a local service provider, like

a plumber, a handyman, or a technician, by using internet

sites that rate service providers in each category of profession.

Some of the internet sites, like the Angies List that operates

in many big cities in the US (its link is https://www.angieslist.

com), base their ratings on customers’ reviews. For this rea-

son, customers are asked to rate the service provider upon

service completion and specify their satisfaction with respect

to the service’s quality, price, and possibly other character-

istics such as the service provider’s availability, promptness,

and so forth. These reviews are analyzed according to a num-

ber of criteria and summarized into a paragraph that is posted

on the internet together with the average rating of that ser-

vice provider, and the number of reviews it is based on. These

ratings are common knowledge, and customers, who seek ser-

vice and want to maximize the value of service, choose a

service provider based on their needs and the posted ratings.

Even if the posted ratings reflected the real value of service

obtained by each customer, yet, the selection process of a ser-

vice provider by customers could not be said to be optimal,

as servers with high ratings are overloaded with requests for

service, whereas others, whose ratings are somewhat lower,

are not called by that many customers. The routing of cus-

tomers to servers could be optimized in terms of customers’

overall utility, if a central controller that had full informa-

tion on the servers’ service rates and their ratings, but had no

information on which servers are currently idle, was the one

to direct customers to the servers. A natural question to ask

here is how much the expected utility of the customers could

be improved, in comparison with the case where individuals

make the choices by themselves, if a central controller was

to direct the customers to the servers. In this article, we pose

this question for a variant of the above-described problem,

where waiting for a busy server is not an option, as service is

needed immediately. More specifically, we assume that if the

first server that a customer calls is busy, then the customer

quits the system as she turns immediately to a different service

system that guarantees urgent service provision.

In the model dealt with here, each customer chooses a

server from a collection of servers, without being able to

observe if the selected server is busy or idle. The only pieces

of information on the servers that are common knowledge

among all customers are the arrival rate, and the service’s

value, and service’s rate of each server. Customers, upon

arrival, choose a server, and if the selected server is busy serv-

ing some other customer, they quit the system immediately.

Such systems are called loss systems.
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Loss systems of the type described above, have been con-

sidered by Erlang since the second decade of the 20th century,

in the context of telephony operators. Such models have been

reinforced during the current Covid-19 pandemic, in view of

various restrictions that were issued regarding social distanc-

ing, while waiting for a service. These restrictions impose a

capacity limit on the number of customers waiting for service

in a queue inside service or retailer facilities. In many parts

of the world, including Canada and Israel, when retailers are

allowed to open their premises, they must obey restrictions on

social distancing and, in particular, on the maximum number

of customers that are allowed to be at the same time inside

commercial establishments, which is a function of their floor

area. For example, in the province of Quebec in Canada, one

customer can be admitted per 20 m
2

(see https://www.quebec.

ca/en/health/health-issues/a-z/2019-coronavirus/restriction-

on-the-number-of-customers-admitted-to-commercial-

enterprises). This restriction has implied that many small

street-front boutiques, vintage, jewelry, and accessory shops

whose floor size is about 20 m
2

are limited to a reception

capacity of just one customer at a time. It is interesting to

note that one of the implications of the pandemic and the

capacity restrictions is that many clients, especially among

elderly ones, prefer shopping in small shops rather than in

malls, in order to reduce the risk of catching the virus while

shopping. A direct effect of such severe capacity restrictions

in small shops, is a low departure rate which prolongs the

waiting time of potential customers, implying that many of

them give up and leave, especially if the weather is bad.

When analyzing decision problems in queueing sys-

tems, there are two common criteria, self-optimization, and

social-optimization. Under the former, it is selfish individu-

als who decide which server to try getting service from. Since

their utility is not a function only of their choice but also of

that made by others, they face a symmetric non-cooperative

game and the solution one looks for is that of symmetric

Nash equilibrium. In our stochastic setting we, in fact, look

for a strategy which is used by all, then under the resulting

steady-state conditions, self-optimization leads a singled out

customer to follow this strategy as well.

Nash equilibrium is usually not optimal from a social (over-

all) point of view. In fact, in a symmetric situation, there

usually exists a socially optimal strategy, which might be

administrated by a central planner and is obeyed by all players.

In our setting, a utility of a symmetric strategy is defined as

the average social gain per unit of time if this strategy is used

indefinitely by all (where social gain is defined as the sum

of gains across participants). The ratio between the optimal

social utility and the one achieved by the Nash equilibrium

strategy, is referred to as the price of anarchy (PoA), as it

states the social loss due to lack of coordination among the

players.

To be specific, we consider a model where customers that

are generated by a Poisson arrival process, seek service from

one out of a number of servers. Service time is exponential

with a server-dependent rate. Likewise, the value of service

is server-dependent. The service rate and the value of ser-

vice of each server, as well as the arrival rate, are common

knowledge overall customers. We assume a loss model so a

customer who selects a busy server leaves empty-handed. A

symmetric profile assigns a routing strategy which states a

probability distribution over the servers. Both the equilibrium

profile (which turns out to be unique) and the socially opti-

mal profile (where uniqueness is not an issue), come with

an expected individual utility, and the inverse of the ratio

between these two values, is the PoA.

Given a model, the PoA is parameter-dependent. In our

model, it is a function of the arrival rate, the servers’ service

rates and the servers’ valuations, and (indirectly) the number

of servers. A commonly asked question is whether it is pos-

sible to bound the PoA of a given model by a function of a

subset of the parameters defining the model. In the extreme

and most looked-at case, a constant upper bound on the PoA is

found, namely, a bound that is free of all model’s parameters.

Such a constant bound may be finitely or infinitely large. In

either case, proving that the bound is tight is desirable. Prov-

ing tightness means finding an instance, which achieves the

bound, or, more generally, proving that there exists a sequence

of instances whose associated PoAs converge to the bound.

The main result presented in this article is that the PoA of the

model presented above is bounded by 2, and that this bound

is tight for any number of servers.

The rest of this article is organized as follows. A litera-

ture review on the PoA, in the context of routing games, is

described in Section 2. Section 3 states the formal model and

introduces the required notation. Section 4 develops the equi-

librium routing profile and the social value associated with

it. Section 5 does the same but now for the socially optimal

routing profile. Section 6 compares the results of the previous

two sections. In Section 7, the tight PoA of 2 is developed.

Section 8 concludes the paper. Three long proofs are relegated

in an Appendix.

2 LITERATURE REVIEW

Routing decisions are common in transportation systems,

network flow models, and queueing theory. The area of

customers decision-making in queues commenced with the

pioneering work of Naor (1969). Usually, a number of indi-

viduals, which can be discrete or nonatomic, need to select a

route, a path, or a server from a set of available options, each

of which is associated with a cost. This cost is a function of

both the choice to be made and the number of customers that

have made the same choice. The terminology and the concept

of PoA were first introduced two decades ago in Koutsou-

pias and Papadimitriou (1999), to measure the inefficiency of

equilibria.

A routing model of nonatomic participants that need to

travel from some origin to a certain destination along the

https://www.quebec.ca/en/health/health-issues/a-z/2019-coronavirus/restriction-on-the-number-of-customers-admitted-to-commercial-enterprises
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edges of a congested network, where the cost of using an

edge is a monotone function of its usage level, is analyzed

in Roughgarden (2003) and Roughgarden and Tardos (2002).

For an extension of these papers, see Roughgarden and Tar-

dos (2004). In Roughgarden (2003) and Roughgarden and

Tardos (2002), the cost along each edge represents latency

as a function of the edge’s congestion. The PoA of minimiz-

ing the total latency for affine cost functions was proved in

Roughgarden and Tardos (2002) to be tightly bounded by 4/3.

In Roughgarden (2003), it is proved that the PoA under a

wide class of edge latency functions, is achieved by the sim-

plest networks having a single commodity and parallel links.

Moreover, if the cost functions are polynomials with nonneg-

ative coefficients, and their maximal degree is p, then the

PoA equals
[
1 − p(p + 1)−(p+1)∕p]−1

, which is asymptotically

Θ
(

p
ln p

)
as p → ∞, that is, it depends only on the largest

degree of the polynomials. For the case of atomic congestion

games with latency functions that are polynomial with pos-

itive coefficients, and of degree at most p, a tight bound on

the PoA, one that is a function of p, and improves upon the

bound given in Awerbuch et al. (2005), is derived in Aland

et al. (2006). See also Gkatzelis et al. (2016). For games with

a concave cost function (as in our case) but with a finite

number of players and unnecessarily limited to symmetric

strategies (under both the equilibrium and the optimization

criteria), it was shown in Vetta (2002) that the PoA is bounded

by 2. The issue of tightness of the bound was not discussed

there.

In the context of queues, the pioneering paper is that of Bell

and Stidham Jr. (1982), and, in fact, its model is the closest

to ours. As in our model, there is a Poisson arrival process

of customers where each needs service from one of a num-

ber of exponential servers that are characterized by their own

service rate and their own waiting line. In Bell and Stidham

Jr. (1982), which deals with an unobservable parallel M∕M∕1

queues, homogenous customers select a server while being

unable to observe which servers are idle and how many cus-

tomers are waiting in front of each busy server. The common

goal of the customers is to minimize their own mean waiting

time based on the servers’ service rates. Both the equilibrium

and the socially optimal profiles are found in Bell and Stid-

ham Jr. (1982). See also Hassin and Haviv (2003, pp. 62–64).

In Haviv and Roughgarden (2007), it is shown that the PoA in

this model is tightly bounded by the number of servers. The

PoA is unbounded for models similar to Haviv and Rough-

garden (2007), but with servers-dependent waiting costs and

service distributions that are not necessarily exponential, see

Altman et al. (2011) and Ayesta et al. (2010). For another

queueing routing problem, where service is granted on a rel-

ative priority basis, see Oz et al. (2017). In Gilboa-Freedman

et al. (2014), it is shown that in the observable version of

the M∕M∕1 queue, the PoA is bounded by 2 as long as the

arrival rate is smaller than the service rate. See also Hassin

and Snitkovsky (2017) where the dilemma whether to check

(upon a fee) a loss system, prior to joining a regular queue, is

dealt with. For more on the PoA for various queueing models,

see Hassin (2016) and the references cited therein.

A similar unobservable routing problem of parallel produc-

tion loss systems, controlled by a central planner, is consid-

ered in Anily and Haviv (2017). More specifically, each of n
parallel production loss systems, called machines, is charac-

terized by its exponential service rate and its arrival rate. A

central planner is allowed to outsource some of the production

at a constant cost per unit, as well as reroute the remaining

units among the machines, in order to minimize the total cost

that consists of the outsourcing cost and the cost of lost units.

The problem is formulated as a cooperative game where the

players are the machines. The authors show that the game can

be reduced to a market game, implying that the competitive

equilibrium price cost allocation is at its core. In the problem

considered in this article, there is a single stream of arrivals,

and outsourcing is not allowed.

3 THE MODEL

Consider a set of n servers where server i ∈ N = {1, … , n}
is associated with a general service time distribution with a

mean service rate of 𝜇i > 0. The servers serve a common

Poisson arrival process with a mean arrival rate of 𝜆. The

servers have no buffers, and so that a customer that arrives

at a server when the server is busy quits the system without

being served. Note that due to the insensitivity property of the

M∕G∕1∕1 model (see, e.g., Haviv, 2013 p. 166), our results

hold for any service distribution, where the mean service time

at server i ∈ N is denoted by (𝜇i)−1
. Our point of departure

is that if the arrival rate to a server is x and its service rate is

y, then, in steady-state, the probability that the server is idle

is y∕(x+ y). Moreover, by the PASTA property, this probabil-

ity applies also to the state of the server as faced by any new

arrival (see, e.g., Haviv, 2013, pp. 133 and 120).

A customer that is served by server i gets a reward of 𝛼i > 0,

for any i = 1, … , n. We assume that the servers are indexed

in a strictly decreasing
1

order of their reward values. Further-

more, without loss of generality, the rewards are assumed to

be scaled so that the largest reward, namely 𝛼1 equals 1, that

is, 1 = 𝛼1 > 𝛼2 > · · · > 𝛼n > 0. Let 𝛼n+1 = 0 and denote

𝜇(i) =
∑i

j=1
𝜇j for i = 1, … , n.

Next, we derive the equilibrium and the socially optimal

profiles. In both cases, we determine which servers are open,

and the rate of arrivals that are routed to each one of them. No

customers are routed to servers that are not open. Note that

neither the customers nor the controller can see when making

a decision, which servers are idle and which are not.

1
We will see below that the assumption of strictly decreasing rewards is

without loss of generality relative to the assumption of weakly decreasing

rewards.
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4 THE EQUILIBRIUM SOLUTION

In this section, we consider the equilibrium solution. Note that

by an equilibrium strategy, we refer to a routing strategy of

customers to the servers under steady-state conditions, such

that if followed by all customers, then an individual customer

cannot do better but also follow this strategy. It is not nec-

essarily the case that this is the best option for an individual

customer under steady-state conditions (and usually it is not).

We present below a mixed strategy that assigns probabilities

(pi)ni=1
to servers,

∑n
i=1

pi = 1, where pi ≥ 0 is the probability

of being routed to server i, 1 ≤ i ≤ n. A server is said to be

open if pi > 0. Note that a necessary and sufficient condition

for an equilibrium is that any individual customer is indiffer-

ent among all open servers, and joining any of the non-open

servers is not better than joining any of the open ones.

Our main goal, in this section, is to derive the, in fact,

unique equilibrium. In particular, we show that in equilibrium

there exists a server, to be denoted by ie, such that only servers

indexed by i, 1 ≤ i ≤ ie, are open. This is expected, as a

low-rewarding server, even if idle with probability one, might

be less appealing than another sufficiently high-rewarding

server, even when the latter comes with a low probability of

being free. Below, we state explicitly the value of ie and the

corresponding routing probabilities. In addition, we derive

the individual mean reward resulting from this equilibrium

behavior.

Theorem 1 In equilibrium, the set of open
servers is {1, … , ie} , where

ie = min

{

i ∈ N ∶ 𝛼i+1 <

∑i
j=1
𝜇j𝛼j

𝜇(i) + 𝜆

}

. (1)

Denote by pe
i the routing probability to open

server i, 1 ≤ i ≤ ie. Then,

pe
i =

𝜇i

𝜆

(
𝛼i

Re − 1

)
, 1 ≤ i ≤ ie, (2)

where

Re =
∑ie

j=1
𝜇j𝛼j

𝜇(ie) + 𝜆
. (3)

Moreover, Re is the expected utility of a random
customer in equilibrium.

Finally, let 𝜋e
i be the probability that server i,

1 ≤ i ≤ ie, is idle in equilibrium. Then,

𝜋

e
i =

𝜇i

𝜆pe
i + 𝜇i

= Re

𝛼i
, 1 ≤ i ≤ ie. (4)

Proof First, observe that if, in equilibrium,

server j is open, then so is any server whose

reward is at least as large as 𝛼j, as otherwise

there would exist a server i ∈ {1, … , j − 1},
who is idle and whose reward satisfies 𝛼i > 𝛼j.

Such a server would be more appealing to some

customers than server j, implying a migration

of some customers to server i. Hence, in equi-

librium, server i is open for all 1 ≤ i ≤ ie for

some (to be determined) ie, 1 ≤ ie ≤ n. Second,

observe that if, in equilibrium, servers i and j are

open, then

𝛼i
𝜇i

𝜆pi + 𝜇i
= 𝛼j

𝜇j

𝜆pj + 𝜇j
. (5)

This is the case since 𝜇k∕ (𝜇k + 𝜆pk) is the prob-

ability that server k is idle, 1 ≤ k ≤ ie. Thus, the

common value in (5) is the individual expected

reward for joining any open server. This obser-

vation coupled with the condition
∑ie

i=1
pe

i = 1

leads, after some algebra, to (2), (3), and (4).

Finally, the fraction on the right-hand side of

inequality (1) is the commonly expected reward

in equilibrium for the customers who join an

open server, which applies to all customers, (see

(3)). The first server that is left closed (if such a

server exists) is the one who obeys the inequal-

ity in (1); that is, the reward to a customer that is

routed to this server, even if the server is free, is

strictly lower than the expected reward obtained

from being routed to the open servers. ▪

Remark 1 Inspecting (1) and (3) indicates

why assuming strictly decreasing rewards come

without loss of generality: had 𝛼i+1 been equal to

𝛼i, one could merge servers i and i+1 into a sin-

gle server whose service rate equals𝜇i+𝜇i+1 and

whose service value coincides with their com-

mon service value. Moreover, if one of them is

open, so is the other.

The next question is how ie varies with 𝜆. It is intuitively

clear that the higher 𝜆 is, the more customers consider migrat-

ing from the low-indexed servers to the less busy ones. Hence,

the higher 𝜆 is, the more servers are open in equilibrium. The

following theorem states this result in a precise way.

Corollary 1 Let Λe(m) be the set of all values
of 𝜆 > 0 where ie = m, 1 ≤ m ≤ n. Then,
𝜆 ∈ Λe(m), 1 ≤ m ≤ n, where

Λe(1) ≡
(

0, 𝜇1

(
𝛼1

𝛼2

− 1

)]
(6)

Λe(m) ≡

(m−1∑

i=1

𝜇i

(
𝛼i

𝛼m
− 1

)
,

m∑

i=1

𝜇i

(
𝛼i

𝛼m+1

− 1

)]

,

1 < m < n, (7)

Λe(n) ≡

(
n−1∑

i=1

𝜇i

(
𝛼i

𝛼n
− 1

)
,∞

)

. (8)

Proof The proof follows immediately from

the definition of ie as given in (1). ▪
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Let 𝜆
e
max(m), 1 ≤ m ≤ n − 1, be the largest value of 𝜆 for

which ie = m. Its actual value can be read from (6), (7), and

(8). Server 1 is the only open server if and only if 𝜆 ∈ Λe(1) =
(0, 𝜆e

max(1)
]
. The set of open servers is {1, … ,m}, for 2 ≤

m ≤ n−1, if and only if 𝜆 ∈ Λe(m) = (𝜆e
max(m − 1), 𝜆e

max(m)
]

and all servers are open if and only if 𝜆 > 𝜆
e
max(n−1).One can

check that for the arrival rates 𝜆 = 𝜆e
max(m), 1 ≤ m ≤ n−1, the

routing probability pe
m is strictly positive whereas the routing

probability pm+1

e is zero, but any infinitesimal increase of 𝜆

necessitates the opening of server m + 1.

Next, we explain why the equilibrium solution is socially

suboptimal: in equilibrium, customers over utilize the

high-rewarding servers, implying that it would have been

socially better had some of them migrated to those with lower

rewards. Their loss would be more than compensated by the

gain obtained by those who did not migrate.

Theorem 2 The marginal social reward con-
tribution per customer of server i in the equilib-
rium solution, strictly increases with i, 1 ≤ i ≤
ie.

Proof The expected social reward per cus-

tomer, given some routing probabilities pi, 1 ≤

i ≤ n, equals

n∑

i=1

𝜇i𝛼ipi

𝜆pi + 𝜇i
.

Its derivative with respect to pi equals

𝛼i𝜇
2

i

(𝜆pi + 𝜇i)2
, 1 ≤ i ≤ n.

Using the value for pe
i , 1 ≤ i ≤ ie, as it appears in

(2), coupled with some algebra, leads to the fact

that the value of the derivative of the expected

social reward per customer for pi = pe
i is equal

to

(Re)2

𝛼i
, 1 ≤ i ≤ ie,

which is indeed increasing with i, 1 ≤ i ≤ ie. ▪

5 SOCIAL OPTIMIZATION

In equilibrium, Re
is the utility of an individual customer (see

(3)), implying that 𝜆Re
is the corresponding utility of the soci-

ety per unit of time. Yet, a central planner who dictates the

routing probabilities might achieve a better social utility. The

problem that the central planner faces is

max
p

1
,… ,pn

n∑

i=1

𝜇i𝛼ipi

𝜆pi + 𝜇i
(9)

s.t.

n∑

i=1

pi = 1

pi ≥ 0, 1 ≤ i ≤ n

and, in particular, to derive ps
i , 1 ≤ i ≤ n, which forms the

optimal solution to this constrained optimization problem.

As in the equilibrium case, it is possible that some of

the servers are open and some are not (but the set of open

servers does not necessarily coincide with the corresponding

one in the equilibrium solution). Also, in social optimiza-

tion, as expected, the open servers are the lower indexed ones.

The details of the optimal social utility are given in the next

theorem.

Theorem 3 The set of open servers in social
optimization is {1, … , is}, where

is = min

{

i ∈ N ∶
√
𝛼i+1 <

∑i
j=1
𝜇j
√
𝛼j

𝜇(i) + 𝜆

}

. (10)

The socially optimal routing probabilities to the
open servers are

ps
i =

𝜇i

𝜆

(√
𝛼i

Θ
− 1

)
, 1 ≤ i ≤ is, (11)

where Θ is the value of the Lagrange multiplier
of the equality constraint

∑n
i=1

pi = 1, which is
equal to

Θ =

(∑is
j=1
𝜇j
√
𝛼j

𝜇(is) + 𝜆

)2

. (12)

The optimal expected reward per customer, to
be denoted by Rs, equals

Rs =
is∑

i=1

𝜇i𝛼ips
i

𝜇i + 𝜆ps
i
= 1

𝜆

⎛
⎜
⎜
⎜
⎝

is∑

j=1

𝜇j𝛼j −

(∑is
j=1
𝜇j
√
𝛼j

)2

𝜇(is) + 𝜆

⎞
⎟
⎟
⎟
⎠

. (13)

Finally, denote by 𝜋s
i the probability that server

i is idle, 1 ≤ i ≤ is, when the socially optimal
routing is used. Then,

𝜋

s
i =

𝜇i

𝜆ps
i + 𝜇i

=
√
Θ𝛼i =

∑is
j=1
𝜇j
√
𝛼j

𝜇(is) + 𝜆
⋅

1
√
𝛼i
, 1 ≤ i ≤ is.

(14)

Proof The observation made in the equilib-

rium criterion that if server j is open, then so

is server i, for 1 ≤ i ≤ j ≤ n, holds here too.

Yet, the sets of open servers in the two solutions,

do not necessarily coincide. Thus, let the set of

open servers be {1, 2, … , is} for some (to be

determined) is. Inspecting the objective function

(9) indicates that this function is separable in its

decision variables, pi, 1 ≤ i ≤ n. Hence, the

derivatives of the summands with respect to the

corresponding variables should coincide for all

variables which come with an interior solution.

The derivative of the i-th function with respect
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to pi equals

𝛼i
𝜇

2

i

(𝜆pi + 𝜇i)2
, 1 ≤ i ≤ is.

Hence, the condition that replaces condition (5),

for 1 ≤ i ≤ is, is

√
𝛼i

𝜇i

𝜆pi + 𝜇i
=
√
𝛼j

𝜇j

𝜆pj + 𝜇j
. (15)

From now on, the proof follows the proof of

Theorem 1, where the term 𝛼i is now replaced by√
𝛼i. As for the value of the Lagrange multiplier,

note that it equals the common derivative value

with respect to the optimal routing probabilities

of the open servers. ▪

Remark 2 By inspecting the right-hand side

of (13), it is possible to see that
∑is

j=1
𝜇j𝛼j is the

social gain had servers {1, … , is} worked in

a non-stop manner. Obviously, this is an upper

bound on the actual term and the second term

adjusts to the correct value.

Remark 3 Note that Remark 1 holds for the

social optimization criterion as well.

Similarly to the analysis of the equilibrium solution, we

show next how is varies with 𝜆. It is intuitively clear that the

higher 𝜆 is, the more the central planner wants customers to

migrate from low-indexed servers to idle ones. Hence, the

higher 𝜆 is, the more servers are open in the optimal solution.

The following theorem states this result quantitatively.

Corollary 2 Let Λs(m) be the set of all values
of 𝜆where is = m, 1 ≤ m ≤ n. Then, 𝜆 ∈ Λs(m),
1 ≤ m ≤ n, if and only if

Λs(1) ≡
(

0, 𝜇1

(√
𝛼1

𝛼2

− 1

)]
(16)

Λs(m) ≡

(m−1∑

i=1

𝜇i

(√
𝛼i

𝛼m
− 1

)
,

m∑

i=1

𝜇i

(√
𝛼i

𝛼m+1

− 1

)]

1 < m < n, (17)

Λs(n) ≡

(n−1∑

i=1

𝜇i

(√
𝛼i

𝛼n
− 1

)
,∞

)

(18)

Proof The proof follows immediately from

the definition of is as given in (10). ▪

Let 𝜆
s
max(m), 1 ≤ m ≤ n − 1, be the largest value of 𝜆 for

which is = m. Its actual value can be read from (16) and (17).

Similarly to the equilibrium case, see Section 4, server 1 is

the only open server if and only if 𝜆 ∈ Λs(1) = (0, 𝜆s
max(1)

]
.

The set of open servers is {1, … ,m}, for 2 ≤ m ≤ n − 1,

if and only if 𝜆 ∈ Λs(m) = (𝜆s
max(m − 1), 𝜆s

max(m)
]

and all

servers are open if and only if 𝜆 > 𝜆

s
max(n − 1). In addi-

tion, for any arrival rate 𝜆 = 𝜆

s
max(m), 1 ≤ m ≤ n − 1, the

routing probability ps
m is strictly positive, whereas the routing

probability ps
m+1

is zero, but any infinitesimal increase of the

arrival rate 𝜆, beyond 𝜆 = 𝜆

s
max(m), necessitates the opening

of server m + 1. As in Section 4, the range of arrival rates

for the case where all n servers are open is not bounded from

above.

6 COMPARISON OF THE TWO SOLUTIONS

By definition, the individual reward in equilibrium, Re
, is

bounded from above by the corresponding reward under the

socially optimal routing, Rs
. In this section, we compare

some other properties of the two solutions, while in the next

section we bound from above the ratio
Rs

Re , which is the PoA

that we are looking for. Recall that the largest arrival rate

for which server m + 1, 1 ≤ m ≤ n − 1, is still closed,

equals, in equilibrium, 𝜆
e
max(m) =

∑m
i=1
𝜇i

(
𝛼i

𝛼m+1

− 1

)
, see

(7), and, under the social optimization criterion, 𝜆
s
max(m) =∑m

i=1
𝜇i

(√
𝛼i

𝛼m+1

− 1

)
, see (17).

Next, we generalize the definition of Θ, the Lagrange

multiplier of the solution of Rs
, see (12), and define

Θi =

(∑i
j=1
𝜇j
√
𝛼j

𝜇(i) + 𝜆

)2

for any i, 1 ≤ i ≤ n. (19)

In particular, Θ1 =
(

𝜇
1

𝜆+𝜇
1

)2

, and Θ = Θis . The next

proposition states a joint property of Re
and Θ.

Proposition 1 For any instance:

1. The sequence
∑i

j=1
𝜇j𝛼j

𝜇(i)+𝜆
is nondecreasing in

i for 1 ≤ i ≤ ie, implying that Re =
max1≤i≤ie

∑i
j=1
𝜇j𝛼j

𝜇(i)+𝜆
.

2. The sequence Θi, (see(19)), is nondecreas-
ing in i for 1 ≤ i ≤ is, implying that Θ =
max1≤i≤isΘi.

Proof Note that for any i, 1 ≤ i ≤ n,
∑i

j=1
𝜇j𝛼j

𝜇(i)+𝜆
can be seen as the weighted average of the fol-

lowing decreasing sequence of i + 1 numbers,

whose first element is 1 and the last element is

zero: 1 = 𝛼1 > 𝛼2 > · · · > 𝛼i > an+1 = 0. Simi-

larly,

√
Θi is the weighted average of the follow-

ing decreasing sequence of i+1 numbers, whose

first element is 1 and the last element is zero:

1 =
√
𝛼1 >

√
𝛼2 > · · · >

√
𝛼i >

√
𝛼n+1 = 0.

The weight of the jth element, 1 ≤ j ≤ i, in any

of these two sequences is proportional to 𝜇j, and

the weight of the last element in the sequences,



ANILY AND HAVIV 695

namely 0, is proportional to 𝜆. The computation

process of Re
(respectively,Θ), starts with i = 1,

that is, the weighted average of the sequence

of two elements, namely
𝜇

1
𝛼

1

𝜇(1)+𝜆

(
respectively,

𝜇
1

√
𝛼

1

𝜇(1)+𝜆

)
. If the next element that is considered

for entering the weighted average is at least as

large as the current weighted average, then the

new element enters and the new weighted aver-

age is at least as large as the former one. The

process for computing Re
ends after inserting

𝛼ie into the corresponding former weighted aver-

age, see (1) and (3). Similarly, forΘ, the process

ends after inserting
√
𝛼is into the corresponding

former weighted average, see (10) and (12). ▪

As can be seen from (1) and (10), except for the fact that

ie and is may have different values, the routing probabilities

to the open servers in the two cases, see (2) together with

(3), and (11) together with (12), have similar forms: under

equilibrium, the probabilities pe
i for 1 ≤ i ≤ ie, are linear

increasing in
𝜇i𝛼i∑ie
j=1
𝜇j𝛼j
, where in social optimization, the prob-

abilities ps
i for 1 ≤ i ≤ is, are linear increasing in

𝜇i
√
𝛼i

∑is
j=1
𝜇j
√
𝛼j
.

Also, in both solutions, when the issue is whether the next

server should be open or not, what matters is only its reward

(regardless of its service rate). The next proposition compares

some of the properties of the two solutions. In particular, we

show that the number of open servers in equilibrium does

not exceed the number of open severs under social optimality.

This can be explained by the fact that individuals decisions

ignore the externalities they inflict on others, making them

joining servers who are too congested from the social point

of view. A similar situation exists in the case where unlimited

queues are formed in front of the servers, as shown in Haviv

and Roughgarden (2007).

Proposition 2 1. The number of open servers
under the social optimization criterion is at
least as large as the number of open servers in
equilibrium, i.e., ie ≤ is.

2. 𝛼ie+1 < Re ≤ 𝛼ie .

3. 𝛼is+1 < Θ ≤ 𝛼is .

4. If ie = is then Θ ≤ Re
.

Proof

1. In view of the fact that the sequence of

rewards is strictly decreasing, the inequali-

ties, 𝜆
e
max(m) > 𝜆

s
max(m) for 1 ≤ m ≤ n − 1,

hold. Thus, if is = m for 1 ≤ m < n,
then 𝜆 ≤ 𝜆

s
max(m) < 𝜆

e
max(m), implying that

ie ≤ m.
2. As explained in the proof of Proposition 1,

Re =
∑ie

i=1
𝜇i𝛼i

𝜇(ie)+𝜆
is the weighted average of the

strictly decreasing sequence 𝛼1, … , aie , 0,

where the weight of the reward 𝛼j is propor-

tional to 𝜇j for j = 1, … , ie, and the weight

of the last term in the sequence, namely 0,

is proportional to 𝜆. By the definition of ie,

see (1), 𝛼ie ≥
∑(ie−1)

i=1
𝜇i𝛼i

𝜇(ie−1)+𝜆
, implying that if

𝛼ie is added to the sequence 𝛼1, … , 𝛼ie−1, 0,

the weighted average of the sequence does

not decrease, and in fact, is less than or

equal to 𝛼ie , that is,

∑ie
i=1
𝜇i𝛼i

𝜇(ie)+𝜆
≤ 𝛼ie . Finally,

the definition of 𝛼ie+1, see (1), implies the

reverse of this inequality.

3. By similar arguments to the ones in the pre-

vious item, one can prove, by (10), (12), and

Proposition 1, that
√
𝛼is+1 <

√
Θ ≤

√
𝛼is ,

concluding the proof.

4. The last item follows from the well-known

weighted power-mean inequality, which can

be proved by the Cauchy–Schwarz inequal-

ity: Θ is a weighted mean of power 0.5

and Re
is a weighted mean of power 1, and

the inequality states that the weighted power

mean increases with the power.
▪

Next we show that customers behave greedily in equi-

librium, at least in comparison to the social optimization

case, that is, the equilibrium routing probabilities to the

low-indexed servers are greater than the corresponding rout-

ing probabilities under social optimization.

Proposition 3 There exists an integer k, 1 ≤

k ≤ ie such that pe
i ≥ ps

i for i = 1, … , k, and
pe

i < ps
i for i = k + 1, … , ie..

Proof The inequality ie ≤ is implies that∑ie
i=1

pe
i = 1 and

∑ie
i=1

ps
i ≤ 1, and, in particular,

that
∑ie

i=1

(
pe

i − ps
i

)
≥ 0. Consider the sequence

pe
i − ps

i for i = 1, … , ie ∶

pe
i − ps

i =
𝜇i

𝜆

(
𝜇(ie) + 𝜆
∑ie

j=1
𝜇j𝛼j

𝛼i − 1

)

− 𝜇i

𝜆

(
𝜇(is) + 𝜆

∑is
j=1
𝜇j
√
𝛼j

√
𝛼i − 1

)

=
𝜇i𝛼i

(
𝜆 + 𝜇(ie)

)∑is
j=1
𝜇j
√
𝛼j − 𝜇i

√
𝛼i
(
𝜆 + 𝜇(is)

)∑ie
j=1
𝜇j𝛼j

𝜆

∑ie
j=1
𝜇j𝛼j

∑is
j=1
𝜇j
√
𝛼j

= 𝜇i
√
𝛼i

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

√
𝛼i
(
𝜆 + 𝜇(ie)

)∑is
j=1
𝜇j
√
𝛼j

−
(
𝜆 + 𝜇(is)

)∑ie
j=1
𝜇j𝛼j

𝜆

∑ie
j=1
𝜇j𝛼j

∑is
j=1
𝜇j
√
𝛼j

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The sign of the above difference for i =
1, … , ie, is determined by the sign of the
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numerator of the fraction in parentheses in the

last expression, which is a decreasing function

in i ∈ {1, … , ie} , as the sequence of rewards

is decreasing. As
∑ie

i=1
pe

i = 1,
∑ie

i=1
ps

i ≤ 1, and
∑ie

i=1

(
pe

i − ps
i

)
≥ 0, there exists an index k ≥ 1

that satisfies pe
i − ps

i ≥ 0 for i = 1, … , k, and

pe
i − ps

i < 0 for i = k + 1, … , ie. ▪

Under social optimization, the marginal social reward is

identical across all open servers, and its value Θ is strictly

higher than any of the square root rewards of the closed

servers. This is certainly not the case in equilibrium, as

implied by Theorem 2. Taking the equilibrium routing prob-

abilities as a point of departure, it is clear that social opti-

mization requires a migration from the low-indexed servers

to some of the high-indexed ones, maybe even leading to the

opening of some additional servers.

For the sake of the next proposition, denote the proba-

bility that a random customer be served by TP. Note that

𝜆 ∗ TP is the throughput of the system. Let TPs
and TPe

be

the corresponding values in social optimum and equilibrium,

respectively.

In the next proposition, we prove that the system throughput

is lower in equilibrium than in social optimum.

Proposition 4 For any instance, TPs
≥ TPe

.

Furthermore, a strict inequality, TPs
> TPe

,

holds for all instances, except for instances
where ie = is = 1..

Proof See Appendix. ▪

7 THE PRICE OF ANARCHY

The PoA is the ratio between the expected gain under the

socially optimal routing (13) and the corresponding value

under the equilibrium routing (3). In other words, the PoA

measures social inefficiency due to both the lack of coor-

dination between the individuals who act selfishly and the

assumed result of their egocentric behavior, namely, the use

of Nash equilibrium.

Comparing the equilibrium condition (5) with the social

optimization condition (15), it is possible to see that the two

strategies coincide in the case where the rewards are identical

across all servers. In particular, the PoA then equals 1. It is

interesting to observe that this is the case in spite of the fact

that the service rates can be different.

In general, the ultimate goal once both the socially optimal

and the Nash equilibrium solutions are derived, is to bound

the PoA as tightly as possible. Generally, the PoA is a func-

tion of all the parameters of the model, which in our case

include (a) the number of servers n, (b) the arrival rate 𝜆,

(c) the individual service rates, 𝜇j, j = 1, … , n, and (d) the

servers’ rewards 𝛼j, for j = 1, … , n. A bound on the PoA is

usually a function of a proper subset of these parameters (and

hence it is applicable to all possible values of the complemen-

tary subset of parameters). Clearly, a tight bound is preferable,

where by “tight” we mean that there exists an instance for

which the bound is achievable. Constant bounds, which are

parameter-free, are, in particular, of special interest. In some

problems, it is possible to show that no finite bound exists.

The objective of this article is, in fact, to characterize the PoA

as much as possible.

The next proposition provides a bound on the PoA. It

does not lead to the tightest bound (as we show shortly), but

nevertheless, it does shed some light on the PoA.

Proposition 5

PoA = Rs

Re ≤

∑is
j=1
𝜇j
√
𝛼j

∑is
j=1
𝜇j𝛼j

. (20)

Proof It is easy to check that had the rewards

been replaced by their square roots, the resulting

equilibrium routing probabilities would have

coincided with the original socially optimal

ones. The reward in equilibrium, under the mod-

ified data, would have been equal to

∑is
j=1
𝜇j
√
𝛼j

𝜇(is) + 𝜆
. (21)

Thus, (i) the equilibrium optimal routing prob-

abilities for a sequence of rewards

(√
𝛼j

)n

j=1

coincide with the optimal routing probabili-

ties that maximize the social reward Rs
for the

sequence of rewards
(
𝛼j
)n

j=1
, and (ii)

√
𝛼j ≥ 𝛼j

for 1 ≤ j ≤ n, as the sequence
(
𝛼j
)n

j=1
is bounded

from above by 1. These observations imply that

Rs
≤

∑is
j=1
𝜇j
√
𝛼j

𝜇(is) + 𝜆
. (22)

As ie is chosen so that

∑k
j=1
𝜇j𝛼j

𝜇(k)+𝜆
is maximized

over k ∈ {1, … , ie} , see Proposition 1, the

inequality Re ≥

∑is
j=1
𝜇j𝛼j

𝜇(is )+𝜆
follows. ▪

Unfortunately, the upper bound on the PoA given in (20)

can be made infinitely large while actually, the PoA itself is

relatively small. This possibility is exemplified next.

Example 1 Consider an instance with n = 2,

𝜆 = 1, 𝛼1 = 1, 𝛼2 = 𝜀 < 1, 𝜇1 = 𝜀, and 𝜇2 = 1.

As
√
𝛼2 > 𝛼2 = 𝜀 >

𝜀

1+𝜀
, the two servers

are open in equilibrium and under social opti-
mization. In order to compute the PoA we need
to compare Re = 𝜀+𝜀

1+𝜀+1
= 2𝜀

2+𝜀
, with Rs =

𝜀+ 𝜀− (𝜀+
√
𝜀)2

2+𝜀
. Thus, PoA = Rs

Re = 1.5+ 0.5𝜀−
√
𝜀, implying that lim

𝜀→0 PoA = 1.5. However,
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PoA ≤ lim
𝜀→0

𝜀+
√
𝜀

2𝜀
= lim

𝜀→0 0.5
(
1 + 𝜀−0.5

)
=

∞, by (20).

In the next lemma, we prove that for case of n = 2, though

the bound on the PoA as given in Proposition 5, can be made

infinitely large, as shown by Example 1, the PoA is quite

small. The lemma bounds the PoA by a function of the service

rates of the two servers, namely 𝜇1 and 𝜇2, and is indepen-

dent of the rewards. Further, the lemma shows that the bound

on the PoA is tightly bounded by two. Indeed, the assumption

1 = 𝛼1 > 𝛼2 on the reward values, explains why the bound on

the PoA as given in the following lemma, is not symmetric in

the two service rates 𝜇1 and 𝜇2.

Lemma 1 For the case where n = 2, the PoA
is bounded by

1 + 𝜇1

1 + 𝜇1 + 𝜇2

(

1 + 2𝜇2 − 2𝜇2

√
𝜇1

√
1 + 𝜇1

)

. (23)

This value itself is tightly bounded by 2.

Proof See Appendix. ▪

The next theorem generalizes Lemma 1, and is the main

contribution of this article.

Theorem 4 The PoA of the loss system is
bounded by 2. More specifically, for the case
where ie = is = 1 the PoA = 1. For any number
of open servers is ≥ 2, the PoA is smaller than
or equal to 2. Finally, for any is ≥ 2, this bound
is tight.

Proof See Appendix. ▪

As shown above, the PoA is much less sensitive to the num-

ber of servers in the parallel multi-server loss system with

rewards than in the classic multi-server queueing model. This

can be explained by the fact that in the standard M/M/1 model

with unlimited capacity, the individual cost is unbounded,

while in the loss system the individual cost is bounded by

𝛼1 = 1, that is, the loss from not getting service from the best

server.

8 CONCLUSIONS

As discussed in Section 1, many service systems have been

greatly affected by the recent pandemic due to severe restric-

tions on social distancing. As a result, service systems with

short buffers have become common in many parts of the

world and we expect that this will also impact the research

on such systems. This article contributes to the currently

well-established area of research on the PoA, in particular to

models in which decision makers need to select a route from

a number of feasible ones in a given network. In most of the

decision models studied, the cost usually comes in the form

of latency. We looked at a multi-server model in which the

reward is due to the value of service, if received. As we noted,

at the beginning of Section 7, there is no loss of efficiency

due to selfish behavior in the case of homogeneity of service

valuations across servers and hence we considered the case

where servers vary with the value of service associated with

them. We solved both equilibrium and socially optimal rout-

ing problems, compared the two resulting routing profiles,

and showed that the PoA is tightly bounded by 2, regardless

of the number of servers. As we have shown in the analysis,

the behavior of customers in equilibrium is more affected by

the rewards, that is, customers tend to overvalue servers with

high rewards and undervalue the other servers, than is the case

when a central planner routes the customers according to the

optimal social solution. This result should be compared with

the corresponding multi-server routing problem with homo-

geneous waiting costs, in which the PoA is tightly bounded by

the number of servers, but the PoA turns out to be unbounded

when the homogeneity assumption is removed (see Altman

et al., 2011). As we noted in our literature review, the value

of 2 for the PoA appears in other queueing models. A possi-

ble explanation for this discrepancy is that although in both

cases the costs or rewards are convex functions of the arrival

rates, in our loss model, the reward is bounded. Note that the

model considered in this article can be classified as an unob-

servable decision problem as customers are routed to a server

without an earlier inspection if the server is busy or idle. As

for the observable version of our problem, it is clear that the

greedy policy of joining the most rewarding idle server, is an

equilibrium. Yet, this is not necessarily the case when social

optimization is of concern and hence the PoA is greater than

1. A central controller will probably take into account the

number of free servers and their parameters, that is, their ser-

vice rate and their value of service, while determining which

free server will be assigned the next customer. We leave this

open question for future research for the PoA of the observ-

able model under the decision if to join or not to join the

standard single server Markovian queue (Naor’s model; see

Gilboa-Freedman et al., 2014).

Recall that we investigated here the PoA for loss systems,

where no buffers exist, and thus waiting in queue for service is

impossible. However, if we kept the same model, but assumed

a finite, positive-sized buffer for waiting customers before

each server, then the main concern for customers would have

been their mean waiting time, which could replace the valu-

ation parameters in our loss system. A natural question to be

asked in this context is, how does the PoA of the steady-state

mean waiting time depend on the buffers’ size. In the extreme

case where the buffers are unlimited in size, as in the case

mentioned above, it has been proved in Haviv and Rough-

garden (2007) that the PoA, which is the ratio between the

equilibrium and the socially optimal mean waiting times, is

bounded by the number of servers, and that this bound is

tight. Intuitively, it seems that the smaller the buffers’ size
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k ≥ 1 is, the smaller the variation within the system of parallel

M∕M∕1∕k servers in steady-state is, and hence the smaller the

PoA is. In the extreme case analyzed here, where no buffers

exist, that is, k = 1, the PoA equals 2. It is an open question

whether the minimum PoA value over k ≥ 1 of M∕M∕1∕k
systems is indeed 2, consistent with the PoA value that we

obtained for loss systems (k = 1).
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APPENDIX: PROOFS

Proof for Proposition 4

The success probability in social optimum is given by TPs =∑is
i=1

ps
i𝜋

s
i , where ps

i is given in (11) and 𝜋
s
i is given in (14).

Similarly, the equilibrium is given by TPe =
∑ie

i=1
pe

i𝜋
e
i ,where

pe
i is given in (2) and 𝜋

e
i is given in (4). By simple algebra, we

get that

TPs =
is∑

i=1

𝜇i

𝜆

(
1 −

√
𝜃

𝛼i

)

and,

TPe =
ie∑

i=1

𝜇i

𝜆

(
1 − Re

𝛼i

)
.

Thus,

TPs − TPe =
ie∑

i=1

𝜇i

𝜆

(
Re

𝛼i
−
√

𝜃

𝛼i

)
+

is∑

i=ie+1

𝜇i

𝜆

(
1 −

√
𝜃

𝛼i

)

=
ie∑

i=1

𝜇i

𝜆𝛼i

(
Re − 𝜃

√
𝛼i

)
+

is∑

i=ie+1

𝜇i

𝜆

(
1 −

√
𝜃

𝛼i

)
(A1)
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We consider first the case where ie = is, where the sec-

ond summand in (A1) vanishes. The fact that the rewards are

bounded from above by 1, with Proposition 2 part 4, imply

that for any i = 1 … ie, 𝜃
√
𝛼i ≤ 𝜃 ≤ Re

, implying that

TPs − TPe =
ie∑

i=1

𝜇i

𝜆𝛼i

(
Re − 𝜃

√
𝛼i

)
≥ 0

The only case where the above difference equals 0, is when

is = ie = 1, that is, the case where the equilibrium solution

coincides with the social optimum.

Next, we consider the case where is > ie, and, in particular,

is > 1. The first summand of (A1) is strictly positive as for

any i, 1 ≤ i ≤ ie, 𝜃𝛼i ≤ 𝜃 ≤ 𝛼is ≤ 𝛼ie+1 < Re
, where the first

inequality follows from the fact that the rewards are bounded

from above by 1 and 𝛼1 = 1, the second inequality follows

from Part 3 of Proposition 2, the third weak inequality follows

from the fact that we consider here the case where is > ie,
and the last inequality follows from part 2 of Proposition 2.

In addition, we assume now that is > 1 and since the rewards

are strictly increasing, we conclude that the first summand of

(A1) is strictly positive.

The second summand of (A1) is nonnegative, as by the third

part of Proposition 2, 𝜃 ≤ 𝛼is < 𝛼is−1 < · · · < 𝛼ie+1, and

equality to zero of this summand may hold only if is = ie + 1.

Thus, we conclude that except for the case ie = is = 1,

where TPs = TPe
, (A1) is strictly positive, implying that

TPs
> TPe

.

Proof for Lemma 1

In order to ease notation assume without loss of generality

that 𝜆 = 1, on top of our assumptions that 𝛼1 = 1 and that

𝛼2 < 1. In particular, 𝛼1 belongs to the unit interval and

we denote the resulting PoA by PoA (𝛼2). We consider below

three exhaustive sub-intervals that may contain 𝛼2:

1. If

𝛼2 <

(
𝜇1

1 + 𝜇1

)2

,

then is = ie = 1, implying that in this range for 𝛼2,

PoA (𝛼2) = 1..

2. If

(
𝜇1

1 + 𝜇1

)2

≤ 𝛼2 <

𝜇1

1 + 𝜇1

,

then, ie = 1 and is = 2. Therefore,

PoA (𝛼2) =
1 + 𝜇1

1 + 𝜇1 + 𝜇2

×
(

1 + 𝜇2 + 𝜇2

(
1 + 𝜇1

𝜇1

𝛼2 − 2
√
𝛼2

))
.

Since PoA (𝛼2) is a monotone increasing function

of 𝛼2 in this interval, we obtain an upper bound on

PoA (𝛼2) by replacing 𝛼2 by the right end-point of

this interval, namely by
𝜇

1

1+𝜇
1

, implying that

PoA ≤
1 + 𝜇1

1 + 𝜇1 + 𝜇2

×

(

1 + 2𝜇2 − 2𝜇2

√
𝜇1

√
1 + 𝜇1

)

.

(A2)

3. If 𝜇1∕ (1 + 𝜇1) ≤ 𝛼2 < 1, then ie = is = 2 and

PoA (𝛼2) = (1 + 𝜇1 + 𝜇2)

−
(
𝜇1 + 𝜇2

√
𝛼2

)2

∕ (𝜇1 + 𝜇2𝛼2) .

(A3)

Since, in this interval, the function PoA (𝛼2) is

monotone decreasing in 𝛼2, it obtains its maxi-

mum at the left end-point of this interval, namely,

at 𝛼2 = 𝜇1∕ (1 + 𝜇1) , which coincides with the

maximal point of the previous interval.

Thus, the bound given in (A2) holds in this interval too,

and, in fact, as is shown next, it is tight at 𝜇1∕ (1 + 𝜇1) ∶

PoA
(

𝜇1

1 + 𝜇1

)
= 1 + 𝜇1

1 + 𝜇1 + 𝜇2

×

(

1 + 2𝜇2 − 2𝜇2

√
𝜇1

√
1 + 𝜇1

)

. (A4)

This concludes the proof of the first part of the Lemma.

Next, we show that (23) is bounded by 2. We commence by

substituting 𝜇1 + 1 by 𝜇1
′ , implying that 𝜇1

′ > 1. Then,

PoA
(

𝜇1

1 + 𝜇1

)
=

𝜇

′
1

𝜇

′
1
+ 𝜇2

⎛
⎜
⎜
⎜
⎝

1 + 2𝜇2 − 2𝜇2

√
𝜇

′
1
− 1

√
𝜇

′
1

⎞
⎟
⎟
⎟
⎠

=
𝜇

′
1

𝜇

′
1
+ 𝜇2

(1 + 2𝜇2) − 2𝜇2

√
𝜇

′
1

√
𝜇

′
1
− 1

𝜇

′
1
+ 𝜇2

<

𝜇

′
1

𝜇

′
1
+ 𝜇2

(1 + 2𝜇2) − 2𝜇2

(
𝜇

′
1
− 1

)

𝜇

′
1
+ 𝜇2

=
𝜇

′
1
+ 2𝜇2

𝜇

′
1
+ 𝜇2

< 2 (A5)

Thus, the PoA for the case of two servers is strictly smaller

than 2. Next, we show that this bound is tight by using

again (23), while decreasing 𝜇1 to an infinitesimal value and

increasing 𝜇2 to infinity:

lim
𝜇

2
→∞

lim
𝜇

1
→0

1 + 𝜇1

1 + 𝜇1 + 𝜇2

(

1 + 2𝜇2 − 2𝜇2

√
𝜇1

√
1 + 𝜇1

)

= lim
𝜇

2
→∞

1

1 + 𝜇2

(1 + 2𝜇2) = 2.

Proof for Theorem 4

The fact that when is = 1 the PoA equals 1, is trivial, so we

proceed to the case where we prove that PoA = 2 for any is ≥
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2. We start by showing that for any number ie,where 1 ≤ ie <
is, of open servers in equilibrium, the PoA is bounded by 2

and that this bound is tight. We then complete the proof by

showing that the same is the case if is = ie.

For ease of notation, we let again, without loss of generality,

that 𝜆 = 1, as in Lemma 1. Denote ie + 1 by k. In view of

the fact that the sequence (𝛼i)ni=1
is strictly decreasing, and

by Proposition 1, 𝛼k <

∑k−1

j=1
𝜇j𝛼j

𝜇(k−1)+1
, see (1). Also, 𝛼i ≥ Θi−1 for

i = 2, … , is, see (10), where the definition of Θi is given

in (19). Finally, Θis ≤ 𝛼is which follows from the argument

that Θis−1 ≤ 𝛼is , see (10), and the fact that Θis is a weighted

average of Θis−1 and 𝛼is . In summary,

0 < 𝛼is+1 < Θis ≤ 𝛼is < · · · < 𝛼k <

∑k−1

j=1
𝜇j𝛼j

𝜇(k−1) + 1

= Re
≤ 𝛼k−1 < · · · < 𝛼1 = 1 (A6)

Similarly to the proof for the case where is = 2, we look

for the lim sup of the PoA as a function of the rewards of

the servers that are open in social optimization but are closed

in equilibrium. We start by proving that under the inequali-

ties of (A6), the assumption that ie = k − 1 < is, implies

that

PoA = lim sup
𝛼ie+1

,… ,𝛼is

Rs

Re =

∑is
j=1
𝜇j𝛼j −

(∑is
j=1
𝜇j
√
𝛼j

)2

𝜇(is )+1

∑k−1

j=1
𝜇j𝛼j

𝜇(k−1)+1

≤ 2

For this sake, note that Rs
is increasing in any of the rewards

𝛼k, … , 𝛼is . We indeed increase them as much as possible

under the constraints of (A6), that is, while the index ie, and

therefore the value of Re
, are kept unaltered. Towards this

end, redefine the sequence of rewards 𝛼k, 𝛼k+1, … , is recur-

sively as follows: for a sufficiently small 𝜀 > 0, start with

𝛼k =
∑k−1

j=1
𝜇j𝛼j

𝜇(k−1)+1
− 𝜀 = Re − 𝜀 and then let 𝛼i = 𝛼i−1 − 𝜀 =

∑k−1

j=1
𝜇j𝛼j

𝜇(k−1)+1
− (i− k+ 1)𝜀 = Re − (i− k+ 1)𝜀 for i = k+ 1, … , is.

In addition, we substitute 𝜇1 + 1 by 𝜇
′
1
> 1 and, accordingly,

we let 𝜇
′
(j) = 𝜇

′
1
+
∑j

i=2
𝜇i = 𝜇(j) +1 for any j, 1 ≤ j ≤ is. Thus,

by the help of (13) and (3), we get

lim
𝜀→0

Rs =
k−1∑

j=1

𝜇j𝛼j + Re
is∑

j=k
𝜇j−

(∑k−1

j=1
𝜇j
√
𝛼j +

√
Re∑is

i=k𝜇i

)2

𝜇

′
(is)

= Re
𝜇

′
(k−1) + Re

is∑

j=k
𝜇j

− Re

((√
Re
)−1∑k−1

j=1
𝜇j
√
𝛼j +

∑is
i=k𝜇i

)2

𝜇

′
(is)

= Re

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝜇

′
(is) −

(
√
𝜇

′
(k−1) ⋅

∑k−1

j=1
𝜇j
√
𝛼j√∑k−1

j=1
𝜇j𝛼j

+ 𝜇′(is) − 𝜇
′
(k−1)

)2

𝜇

′
(is)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= Re

𝜇

′
(is)

⎛
⎜
⎜
⎜
⎝

𝜇

′2
(is) −

⎛
⎜
⎜
⎜
⎝

√
𝜇

′
(k−1) ⋅

∑k−1

j=1
𝜇j
√
𝛼j

√∑k−1

j=1
𝜇j𝛼j

+ 𝜇′(is) − 𝜇
′
(k−1)

⎞
⎟
⎟
⎟
⎠

2

⎞
⎟
⎟
⎟
⎠

(A7)

Next, by using the equation a2 − b2 = (a + b)(a − b), we get

that the above equals

Rs

Re =
1

𝜇

′
(is)

⎛
⎜
⎜
⎜
⎝

2𝜇
′
(is) − 𝜇

′
(k−1) +

√
𝜇

′
(k−1)

∑k−1

j=1
𝜇j
√
𝛼j

√∑k−1

j=1
𝜇j𝛼j

⎞
⎟
⎟
⎟
⎠

×
⎛
⎜
⎜
⎜
⎝

𝜇

′
(k−1) −

√
𝜇

′
(k−1)

∑k−1

j=1
𝜇j
√
𝛼j

√∑k−1

j=1
𝜇j𝛼j

⎞
⎟
⎟
⎟
⎠

In addition, note that Rs
is an increasing function of 𝜇is while

Re
is not a function of it, implying that the above expression

is increasing in 𝜇is . Further note that when one increases 𝜇is

to infinity, the same is the effect on 𝜇
′
(is). This, in turn, makes

the above ratio converge to 2, implying that the limit of the

ratio (A7) when 𝜇is goes to infinity is 2. This concludes the

proof that PoA = 2 for the case where ie < is.
It remains to prove that this bound holds also for the case

where is = ie. Without loss of generality, assume that ie =
is = n, that is, all servers are open both in equilibrium and in

social optimization. For that to happen, it must hold that 𝛼n ≥∑n−1

i=1
𝜇i𝛼i

𝜇(n−1)+1
, see (1). Next, we show that the PoA as a function of

𝛼n, in the interval

𝛼n ∈

[∑n−1

i=1
𝜇i𝛼i

𝜇(n−1) + 1
, 𝛼n−1

)

(A8)

is maximized at the left end-point of the interval, namely at

𝛼n =
∑n−1

i=1
𝜇i𝛼i

𝜇(n−1)+1
, which we denote by Re

(n−1), as it is the equi-

librium reward per customer when the first n − 1 servers are

open.

Towards that end, let PoA (𝛼n) denote the PoA as a function

of 𝛼n in the above interval, while all the other parameters are

fixed, so in particular, ie = is = n. Using (3) and (13) for this

special case, it can be shown, after some algebra, that for 𝛼n
in the interval (A8)

PoA (𝛼n) =
(
𝜇(n) + 1

)
−

( n∑

i=1

𝜇i
√
𝛼i

)2

∕
n∑

i=1

𝜇i𝛼i. (A9)
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The sign of the partial derivative of (A9) with respect to 𝛼n is

sign

(
𝜕PoA (𝛼n)
𝜕𝛼n

)

=−sign

⎛
⎜
⎜
⎝
2

( n∑

i=1

𝜇i
√
𝛼i

)
𝜇n

2
√
𝛼n

n∑

i=1

𝜇i𝛼i−𝜇n

( n∑

i=1

𝜇i
√
𝛼i

)2⎞
⎟
⎟
⎠

= sign

(
𝜇n
√
𝛼n

n∑

i=1

𝜇i𝛼i − 𝜇n

n∑

i=1

𝜇i
√
𝛼i

)

= −sign

n∑

i=1

𝜇i

(
𝛼i∕

√
𝛼n −

√
𝛼i

)
< 0.

Thus, the function PoA (𝛼n) is decreasing in 𝛼n, implying that

its maximum is obtained at the break-point 𝛼n =
∑n−1

i=1
𝜇i𝛼i

𝜇(n−1)+𝜆
,

where the equilibrium solution does not route any customers

to server n,. This implies that, effectively, the worst PoA for

is = n in that interval is obtained when ie = n − 1, and the

rest of the proof follows from the former part of the proof

that the PoA is bounded by 2 for ie < in and that this bound

is tight.
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