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Abstract

This paper investigates how interbank credit exposures affect financial stability.

Policy makers often see such exposures as undermining stability by exacerbating

cascading losses through the financial system. I develop a model that features a

trade-off between cascading losses and risk-sharing. In contrast to previous studies

I find that reducing interbank connectivity may destabilize the financial system

via the bank-run channel. This is because it decreases the risk-sharing benefits of

interbank connectivity. A bank-run model features two islands that are connected

via a long term debt claim. Varying the size of this claim (interbank connectivity),

I study how the decision to ‘run on the bank’ is affected. I run a simulation of

the model, calibrated to the U.S. banking system between 1997-2007. I find that

large bankruptcy costs are required to trump the risk-sharing benefits of interbank

credit exposures.
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I. Introduction

Should financial institutions be treated more favorably, in the context of a

financial crisis, to other companies or individuals? This question has been

the topic of active debate in recent years following the events of 2007-8. In

practice, regulators the world over seem to answer it with a definite yes: from

bail-outs to favorable treatment in bankruptcy, financial institutions are deemed

systemically important and have earned an acronym to that effect (SIFI).1

Policy makers have argued that giving seniority to SIFIs could stabilize

the financial system (Mengle, 2010). This is because it reduces interbank credit

exposures, insulating the financial sector from cascading losses (domino-effect;

Duffie and Skeel, 2012; Bliss and Kaufmann, 2004). However, giving seniority

to banks implies that other creditors recover less in bankruptcy. Among those

are short-term creditors whose panic may destabilize the financial system (Roe,

2013).2 This paper investigates how interbank credit exposures affect financial

stability. It studies the trade-off between domino-effect contagion and risk-

sharing as it affects short-term creditors’ decision to ‘run on the bank’.

Studying this trade-off in equilibrium requires a model in which both

the domino-effect and risk-sharing are present, and where non-bank creditors

can respond to changes in the financial network. I propose a two-period bank-

run model in which banks have two types of creditors: depositors and other

banks. Depositors may decide whether to withdraw their deposit in period

1 or wait until long-term investment bears fruit in period 2. If enough of

them withdraw in period 1, this decision to ‘run on the bank’ is individually

optimal even though fundamentals could be high enough for it to be socially

sub-optimal. Following Goldstein and Pauzner (2005, GP), I assume depositors

don’t have common knowledge about the economy’s fundamentals; instead, each

agent observes a private signal about fundamentals.3 This allows me to evaluate

existing policy in equilibrium, because it resolves the problem of multiple self-

fulfilling equilibria typical of Diamond and Dybvig (1983) bank-run models.

1Systemically Important Financial Institutions.
2“If derivatives and repo counterparties bear less risk, as they do, due to the Bankruptcy

Code’s favoritism, then other creditors that are poorly prioritized bear more risk and thus
have more incentive for market discipline.”

3The noisy signal could also be which interpreted as agents’ opinion about the soundness
of the economy.
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The first contribution of this paper is the finding that reducing inter-

bank credit exposures may in fact decrease the stability of the financial system.

In absence of bankruptcy costs, connecting the banks is always beneficial be-

cause it allows depositors to share idiosyncratic risk. This finding contrasts

with previous studies on domino-effect contagion, who do not model agents’

endogenous response to changes in the financial network (Acemoglu, Ozdaglar,

and Tahbaz-Salehi, 2015; Gai and Kapadia, 2010).

The second contribution is to generate predictions as to which effect is

stronger, depending on the magnitude of bankruptcy costs and degree of risk-

aversion. If bankruptcy costs are positive, the risk-sharing channel conflicts

with domino-effect contagion, as the latter reduces long-term value when the

financial sector is highly interconnected. I simulate the model, calibrated to

the U.S. banking sector between 1997-2007, and find that if bankruptcy costs

are below 20%, the optimal policy is to have interbank connectivity in excess

of 60% of banks’ balance sheets. Conversely, if bankruptcy costs are as high

as 50% netting is optimal. These results suggest that bank seniority could be

counter-productive if bankruptcy costs are not too high.

The size of bankruptcy costs is important, because it determines the

strength of the domino-effect. In the literature on domino-effect contagion,

bankruptcy costs are often calibrated as high as 50-100%, referencing recovery

rates on corporate bonds that of companies entered bankruptcy. However, it

is problematic to ascribe low recovery rates to bankruptcy costs. The Lehman

Brothers case serves as a good example. There, legal and administration costs

amounted to about 2.5% of total claims approved by the courts (roughly $9

billion). Yet, general creditors recovered only 31% of their claims, which is

significantly lower than the banking sector historical average.

This paper contributes to a number of areas in economics and finance.

First, it is related to the literature on domino-effect contagion discussed above.

My model is not the first that contains an endogenous response to instability.

Erol and Vohra (2018) study endogenous network formation in face to the

contagion risk. In their model, stability is a function of agents’ choices, but

is limited only to the domino-effect. The value of the network is at odds with

its stability: the higher is the value of a link (financial or other) – the more

agents want to connect – the larger is the impact of the domino-effect, thus
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decreasing stability. In contrast, the cause of instability in my paper is the

interplay between exogenous and endogenous risk. Agents’ choice of whether

to run on the bank is directly affected by long term value: the higher is this

value – the more stable is the banking sector. Interbank credit exposures enlarge

this value because they allow agents to share idiosyncratic risk.

It also contributes to the area of banking by putting forth a novel

mechanism by which risk-sharing increases financial stability. Other works in

this vein modelled risk-sharing as occurring between banks themselves, e.g. via

credit lines which smooth liquidity shocks (Allen and Gale, 2000; Ladley, 2013).

The mechanism in my paper is different to theirs: interbank connectivity is only

effective when banks are already insolvent; risk-sharing occurs at the level of

depositors, not banks.

Another contribution to the banking literature is the application of the

seminal work of GP to the study of public policy. Other works applied GP to

study government guarantees (Allen, Carletti, Goldstein, and Leonello, 2018)

and bank heterogeneity in banks’ asset holdings (Goldstein, Kopytov, Shen, and

Xiang, 2020). Both are applications using a similar framework but studying

separate questions. Liu (2016) studies the joint occurrence of interbank credit

freezes and bank-runs. His focus is on liquidity, while I study the interplay

between liquidity and solvency.

In the literature on insolvency, my paper is related to Matta and

Perotti (2016), who study how risk arising from premature liquidation of illiquid

assets can contribute to the probability of a bank-run – and the way in which

mandatory stay helps in dealing with this problem. In contrast, my paper

focuses on priority rules that define the boundaries of the estate upon which

mandatory stay is imposed. Bolton and Oehmke (2015) study how seniority

rules affect banks’ risk-taking behaviour. Their focus is the effect of seniority

on investment efficiency and welfare, whereas mine is financial stability.

Seniority of interbank liabilities is achieved in practice by excepting

Qualified Financial Contracts (QFCs, mostly derivative contracts) from manda-

tory stay. It has the effect of reducing interbank connectivity, as it allows SIFIs

to net mutual assets and liabilities with an insolvent bank.4 This would not

4The reason it is pertinent particularly to SIFIs is that it requires some form of mutual
claims, which typically arise from their role as dealers in OTC derivative markets and as
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† Gross credit exposure is the amount of credit risk left before collateralization and
after netting; according to this number firms post initial margins.

Figure 1. Global OTC derivative markets (Data from the BIS)†

be allowed ordinarily. Figure 1 illustrates the trend in market value of OTC

derivatives, which grew rapidly in the run-up to the 2007-8 crisis. In December

2008, netting reduced banks’ credit risk by a staggering $30 trillion, about 85%

of their global gross market value (Figure 1). Netting is one of the two most

prominent exceptions to mandatory stay (Wood, 2007).

Insolvency netting was introduced to the U.S. Bankruptcy Code in a

series of amendments between 1978-2006 (Mooney Jr, 2014).5 This legislation

was put forth “with congressional intent in creating... safe harbors to promote

the stability and efficiency of financial markets.” (Chapman, 2016) Other coun-

tries treat insolvency netting in different ways, deviating from the guidelines

set up in the Basel Accords.6 However, U.S. law is likely to be relevant in most

liquidity providers (Bliss and Kaufmann, 2004).
5In 1978, ‘safe harbors’ were first introduced to the Bankruptcy Code in order to enhance

commodity market stability. Hence, a series of amendments passed by Congress expanded
the type of institutions and contracts that could benefit from the protection of safe harbors,
and consequently, netting became more and more robust. In the U.K., netting is an old legal
practice, dating back as early as the 18th century, and is not limited to financial contracts.

6The Basel Accords set a minimum reporting requirement for two securities to be eligible
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advanced economies, as banks may choose the legal system which governs their

Master Netting Agreement.7

The paper is organized as follows. The next section sets up the model

and section III describes the equilibrium. In section IV I explicitly analyze how

an interbank connection affects the equilibrium and state the main result of

the paper: giving priority to banks may increase the probability of runs. In

section V I describe how I calibrate the model, and present simulation results.

Section VI concludes with a discussion of the implications of this paper for

policy. All proofs are provided in the the appendix.

II. Model

This section spells out a bank-run model with idiosyncratic risk based on Gold-

stein and Pauzner (2005, GP). In essence, bank-run models are a coordination

game: there are situations in which if agents’ believed that other agents will not

run – they would not run themselves. The main problem these models deal with

is the existence of a “bad” equilibrium (bank-run), which is Pareto-dominated –

alongside a “good” equilibrium, which is Pareto-dominating. In the absence of

uniqueness, bank-run models do not provide direction as to which equilibrium

is selected, and thus policy analysis is precluded.8

GP apply methods from the theory on global games to Diamond and

Dybvig’s seminal bank-run model. By modelling the structure of the economy’s

fundamentals and agents’ information, their model pins down a unique ex-ante

probability of bank-runs. Moreover, one of their forceful points is to show

that bank-runs are typically an equilibrium phenomenon even in the second-

best case (equilibrium that is constrained by agents’ private information about

their type). In their model, bank-runs occur even in states of the world where

for set-off, that countries can only make more strict, i.e. less favourable to netting.
7From conversations I had with practitioners, they estimated that in the majority of cases

the law governing set-off would be either American or English – mainly due to the advantages
related to certainty attributed to common law – the difficulty of a judge to set a precedent
under a common-law system, in contrast to the ability of a judge to interpret the law in her
own way under a code-of-laws system.

8Multiplicity of equilibria in coordination games can be thought of as an artefact of extreme
and implausible assumptions about common knowledge. These assumptions are intended to
simplify analysis, i.e. they are not the result of an underlying reason internal to the logic of
the model.
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fundamentals are strong enough so that in absence of the coordination problem

there would not be a run on the bank. In this sense bank-runs are a self-fulfilling

prophecy.9

A. Physical Environment

An economy with two islands, a single consumption good and two assets (short

and long) exists for three periods: 0,1 and 2. For the moment consider only an

individual island; the islands are identical ex-ante. Island k is inhabited by a

continuum of depositors and a representative bank. All agents have access to

a risk free asset (with a return normalized to 0) and a risky asset that takes 2

period to mature; if allowed to mature, it yields θk. Total return on the risk-free

and risky asset is given by R(θk),

R (θk) = x+ (1− x)θk (1)

where x is the investment in the short asset. Returns are a function of a

state variable θk ∈ Θ ⊆ R (economic fundamentals); R is continuous and

monotonically increasing in θk, so high values of the state variable imply good

news to investors. The fundamentals in island k are composed of a common

factor θ and a mean zero idiosyncratic factor νk,

θk = θ + νk (2)

θ ∼ fθ E[θk] = µθ (νk, ν−k) ∼ fν E[νk] = 0

Let θ = (θ, νk, ν−k) be the state of nature, and its probability density function

fθ. Since the islands are ex-ante identical, fν is symmetric: fν(ν, ν ′) = fν(ν ′, ν),

which also implies V ar(νk) = V ar(ν−k). I assume that the correlation between

9The literature on self-fulfilling prophecies and coordination games dates back at least to
Aumann (1976) who establishes the notion of common knowledge for game-theoretic models.
Models with multiple equilibria were studied in banking (Chari and Jagannathan, 1988),
monetary policy (Benhabib, Schmitt-Grohé, and Uribe, 2001) and macroeconomics (Farmer
and Benhabib, 1994). Deviations of the common knowledge assumption gave rise to a vast
literature that this review cannot hope to span. Notable references are Rubinstein (1989);
Monderer and Samet (1989); Carlsson and Van Damme (1993); Morris and Shin (1998).
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νk and ν−k is not perfectly positive,

Cov(νk, ν−k)

V ar(ν)
6= 1 (3)

B. Agents and Preferences

The economy is populated by a unit continuum of depositors, and one bank

per island. There are two types of depositors: impatient (with proportion λ)

and patient (with proportion 1 − λ). Impatient depositors consume in period

1 and patient in period 2. Depositors don’t know their type in period 0, which

they observe only in period 1. Moreover, their type is their private information

and is unverifiable, so that patient depositors can always disguise themselves

as impatient. Ex-ante expected utility of an agent is given by

Eu =

∫
θ

[
n q u(c1) +

(
1− n+ (n− λ)(1− q)

)
u(c2)

]
fθ(θ)dθ (4)

where θ is the state of nature, n = n(θ) is the proportion of depositors who

withdraw in period 1, ct = ct(θ) is consumption in period t and q = q(θ) is

the probability of consumption in period 1. In case an impatient depositor

couldn’t get her deposit, she consumes zero. If consumption in period 2 is

positive, then the probability of consuming is 1; I therefore omit the probability

of consumption in period 2 (and consequently its t subscript). The utility

function u is a monotonically increasing (u′ > 0) and has decreasing marginal

gain (u′′ < 0).

I assume that banks expect zero profits, thus maximizing agents’ wel-

fare. Banks face a portfolio allocation problem, investing x in the risk-free asset

that yields Rf , and 1− x in the risky asset with expected return of µθ. In all,

they choose (c, x) in order to maximize depositors’ period 0 expected utility

(eq. 4).

C. Information Structure

Recall that returns on island k depend on a common factor θ and an idiosyn-

cratic factor νk (eq. 2). The idiosyncratic factor (νk, ν−k) is observed only in
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period 2. The common factor θ is observed imperfectly already in period 1.

Agent i observes her type, and a private noisy signal θi

θi = θ + εi (5)

ε ∼ U [−ε, ε] ε ⊥ θ

where εi is the realization of the noise in agent i’s signal; ε is uniformly dis-

tributed with range 2ε around the real value of θ. The rest of the details about

agents preferences and the physical environment as well as the institutional en-

vironment, are all common knowledge. No information is revealed publicly, and

for simplicity assume that there is no communication possible between agents.10

D. Institutional Environment

The rationale for a banking sector is risk-sharing of individual liquidity risk – i.e.

being patient or impatient. In period 0, agents can deposit their funds at their

regional bank, which promises a convertible debt contract with gross interest

rate c if the deposit is withdrawn in period 1, and otherwise a debt-plus-equity

claim on the assets of the bank in period 2.1112

Denote by D the size of the period 2 debt claim13 and by Ak the

external assets of bank k from its own portfolio, (i.e. unrelated to bank −k)

Ak = (1−min[nc, x])Rk (6)

10Even if it was possible to communicate, agents would not have had proper incentive to
tell the truth about their signal, thus an unverifiable signal is enough.

11Observe that in absence of any other period 2 debt claims, the debt-plus-equity claim is
equivalent to a simple equity claim. Demandable debt is a standard assumption in the banking
literature for at least two reasons: (1) it is the optimal contract to overcome moral hazard
(Calomiris and Kahn, 1991); (2) it is a constrained-optimal risk-sharing contract between
agents in period 0 facing asymmetric information in period 1: “banks can be viewed as
providing insurance that allows agents to consume when they need to most. Our simple
model shows that asymmetric information lies at the root of liquidity demand.” (Diamond
and Dybvig, 1983)

12Convertible debt is a risk-sharing mechanism. It is not optimal ex-ante because it fixes
the interest rate where market clearing would have it vary. However, it does addresses the
asymmetric information problem, thus allowing agents to share liquidity risk (Diamond and
Dybvig, 1983). If agents could coordinate on the good equilibrium (no run), then it is the
constrained optimal contract.

13For the sake of brevity, I abstract from optimal capital structure.
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In period 0 the bank invests x in the risk-free, and 1−x in the risky asset; period

1 value is capped at x. In period 1 it liquidates proportionally from its total

portfolio to pay for first period withdrawals.14 Impatient depositors always

withdraw their deposit in period 1. Patient depositors may decide whether to

withdraw in period 1 or 2.

Definition 1 (Liquidity). A bank is liquid if the total amount of period 1 claims

is lower than liquid assets, nc ≤ x; otherwise it is deemed illiquid. When a bank

is liquid, the asset is not allowed to mature – i.e. it is liquidated yielding a scrap

value of (1 − γ1)Ak in period 2. Denote by γ̃1 = γ̃1(n) the value of illiquidity

costs depending on the level of withdrawals,

γ̃1(n) =

0 x ≥ nc

γ1 x < nc
(7)

Moreover, when a bank is liquid period 1 claims are paid with certainty, whereas

when it is illiquid period 1 claims are paid on first-come-first serve basis. The

probability of consumption in period 1 q = q(n) is

q(n) =

1 x ≥ nc
x
nc x < nc

(8)

Definition 2 (Solvency). Bank k is solvent if the total level of assets in period

2 exceeds the total level of debt claims, Ak(1 − γ̃) ≥ D; otherwise it is deemed

insolvent, and all general creditors are paid pro-rata. If a bank is insolvent in

period 2, its estate is liquidated yielding a scrap value of (1 − γ2)(1 − γ̃1)Ak.

Denote by γ̃2 = γ̃2(θ) the value of illiquidity costs depending on the level of

withdrawals,

γ̃2(θ) =

0 Ak(1− γ̃1) ≥ D

γ2 Ak(1− γ̃1) < D
(9)

Illiquidity costs γ1 and bankruptcy costs γ2 affect period 2 value. The

distinction between them is crucial, since illiquidity costs do not contribute to

the domino effect. This is because they are not caused by the insolvency of

14This assumption ensures that when agents run on the bank, returns in period 2 are lower.
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another bank.

III. Equilibrium

In this section I describe the equilibrium of the model. In order to focus on

this paper’s contribution, I begin the analysis of equilibrium for a given choice

(x, c). In the next subsection I describe optimal portfolio allocation / deposit

rates. The first best (FB) resource allocation can be achieved when there is no

asymmetric information, and is given by:

Eθ

[
u′
(
(1− λcFB)

)
u′(cFB)

R(θ)

]
= 1 (10)

This allocation is only available if agents’ types are not private information;

otherwise bank-runs (patient depositors withdrawing early) may disrupt this

optimality. Bank-runs are a result of a failure of patient agents to coordinate

on the ‘good equilibrium’.

Definition 3 (Bank-runs). A ’good equilibrium’ obtains if all patient depositors

withdraw late whenever fundamentals are high enough to support the optimality

of withdrawing late. Bank-runs occur in states in which, although fundamentals

are high enough to support the good equilibrium, nevertheless there is at least

some early withdrawal by patient depositors and a Pareto sub-optimal equilib-

rium obtains.

Impatient agents always withdraw their funds in period 1. However,

patient depositors need to choose whether to withdraw in period 1 or wait until

period 2. Their decision is based upon all available information. Crucially,

agents use their signal in two ways: (a) to infer information about exogenous

variables: returns Rk; (b) to infer information about endogenous variables: the

proportion of agents who withdraw early, n.

Let v = v(θ) be the patient agent differential utility between with-

drawing late and early at state θ. The relevant welfare evaluation made by

a patient agent is captured by ∆ = E[v |θi], the expected utility difference

between withdrawing late to withdrawing early.
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Definition 4 (Patient agents’ utility differential). Let ∆(·) be patient agents’

utility differential between withdrawing early to withdrawing late:

∆(θi) =

∫∫∫
θ
v(θ)fθ(θ|θi)dνkdν−kdθ (11)

v(θ) = u(c2)− [qu(c1) + (1− q)u(c2)] (12)

= q[u(c2)− u(c1)]

where q = q(θ) = min[ xnc , 1] (see eq. 8)

∆(θi) indicates the expected value of v, conditional on observing signal

θi. v depends on the proportion of withdrawals n, the short-term interest rate

c, liquid assets x, returns R and the capital structure in period 2. In keeping

with the global games method, I assume at least some values of fundamentals in

which patient agents’ binary decision (withdraw early or late) does not depend

on other agents’ actions:

Assumption 1 (Extreme locales of fundamentals). Two extreme locales of fun-

damentals are assumed to exist in which patient agents’ actions are independent

of their beliefs concerning other agents’ actions.

a. Lower dominance locale: θ ∈ [0, θ(c, x)], where θ is defined by the relation

c =
1− λc
1− λ

R
(
θ
)

(13)

b. Upper dominance locale: θ ∈ [θ̄(c, x), 1], where

(1− x)R(θ̄)(1− γ1)(1− γ2)

1− λ
≥ c (14)

Furthermore, θ̄ is assumed to satisfy θ̄ < 1− 2ε.

The interpretation of assumption 1 is as follows: a. if fundamentals

are low enough so that the consumption in period 1 is equated to that of

period 2 even in the best of states (no run) – then a patient depositor’s strictly

dominant strategy is to withdraw early regardless of other agents’ actions; b. if

fundamentals are high enough so that consumption in period 2 is higher than

11



in period 1 even in the worst of states – then a patient depositor’s strategy is

to withdraw late regardless of other agents’ actions.

Let s(θi) be patient depositor i’s (mixed) strategy – the probability

with which she withdraws early. It is equal to 1 (0) whenever ∆(θi, ·) < 0 (> 0).

If in equilibrium s∗ is increasing from 0 to 1 at some θ∗ and is 1 for θi < θ∗ and

0 for θi > θ∗, I call this a threshold equilibrium (θ∗ is a threshold value of the

signal below which she withdraws early even if she is patient).

Proposition 1 (Unique threshold-equilibrium). There exists a unique equilib-

rium. Patient agents withdraw early whenever they observe a signal θi < θ∗,

and withdraw late otherwise.

All proofs are provided in the the appendix. In a threshold equilibrium

the proportion of depositors withdrawing in period 1 in each island n:

n(θ, θ∗) =


λ if θ ∈ [θ∗ + ε, 1]

λ+ (1− λ)
(

1
2 + θ∗−θ

2ε

)
if θ ∈ [θ∗ − ε, θ∗ + ε]

1 if θ ∈ [0, θ∗ − ε]

(15)

Note that since εi ∼ U(−ε, ε), then all signals are within the bounds of ±ε from

the common factor θ, and in a given threshold-equilibrium (θ, θ∗): n(θ, θ∗) is

degenerate. For values of θ ≥ θ∗+ ε no patient agent will withdraw early, while

for θ ≤ θ∗ − ε all patient agents withdraw early. In between these two values

Figure 2. Proportion of early withdrawals n(θ)
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the proportion of depositors withdrawing early is linearly decreasing in θ with

slope 1−λ
2ε (see Figure 2).15

There are three main differences between my model and that of GP:

an additional island, asset returns and bankruptcy costs. First, in GP’s model

there is a single island, which precludes any heterogeneity in period 2. Sec-

ond, GP have a fixed return with varying probability, while in my model

returns vary with θk, but are certain for a given θk. Third, my model has

bankruptcy/illiquidity costs whereas GP’s model doesn’t. In both models there

are no costs to liquidating the long asset up to a proportion x, at which point

first period claims are paid on a first-come-first-served basis. However, in GP

x = 1 so there are no costs at all. Conversely, in my model liquidation of the

long asset is cost-free up to a proportion x ≤ 1. Not all assets are liquidated to

satisfy first period withdrawals, which means there is always some value left to

agents who did not run or didn’t manage to withdraw their deposit in time.

This concludes the setup of the model. In sum, I spelled out a variation

of an otherwise standard bank-run model, originally put forward by Diamond

and Dybvig (1983). Crises are a result of depositors inability to coordinate

on the good equilibrium. Equilibrium multiplicity is resolved by relaxing the

assumption of common knowledge about economic fundamentals (and therefore

other agents’ behaviour). Depositors observe noisy signals about fundamentals,

and use a threshold strategy in equilibrium – as in Goldstein and Pauzner (GP).

A. Optimal Portfolio Allocation and Deposit Rate

The analysis above holds for any choice of (x, c). Banks choose (x, c) to max-

imize agents’ ex-ante utility. Since the model has no closed form solutions for

θ∗ as a function (x, c), it is impossible to state an exact expression for x and c.

If markets were complete (no asymmetric information), the optimal

risk-sharing scheme would imply a non-constant deposit rate. With asymmet-

ric information, the choice of c is constrained to be constant because agents

cannot make credible promises to pay.16 In this case banks may choose c ∈ R+,

15Linearity is due to uniform distribution of the signal.
16If there were equity markets, the deposit rate would remain constant, but consumption

in period 1 would not.
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weighing two opposing effects. A higher deposit rate: (1) increases ex-ante wel-

fare due to risk sharing; (2) decreases ex-ante welfare due to lower investment

and higher threshold strategy θ∗. The first effect was first studied in (Diamond

and Dybvig, 1983); the second was studied in GP.

Proposition 2 (Optimal Deposit Rate). For a given x, there exists a unique

choice of deposit rate c which maximizes agents ex-ante utility.

Proposition 3 (Optimal Liquidity). For a given c, there exists a unique choice

of liquid assets x which maximizes agents ex-ante utility. If illiquidity costs are

low, γ1 ≤ γ̄1, it is optimal to choose x = λc (the minimum required to pay

impatient agents’ withdrawals); in case γ1 > γ̄1, banks choose x(γ1) > λc.

Proposition 3 states the trade-off that banks face when choosing liq-

uidity. On one hand, a more liquid portfolio of assets reduces returns. On the

other hand, it salvages value because the bank is liquid in more states. For these

reasons, higher liquidity may be beneficial for stability, but not always. The

optimal choice of x equates the marginal effect of liquidity on period 2 utility

(negative) to the expected value salvaged due to higher liquidity (positive).

IV. Interbank Connectivity

Section II provided the general setup of the model, with the aim of giving rise

to a framework in which banks have two types creditors: depositors and banks.

In the last section I described the equilibrium. In this section I consider an

interconnected financial system: banks who have mutual assets and liabilities.

Banks have a debt claim of size B on one another, which matures

in period 2. Recall that the size of non-bank liabilities is D, and denote by

ψ = B
B+D banks’ recovery rate. If at least one bank is insolvent, the interbank

connection implies a transfer from the strong to the weak bank. Let Ãk be the

value of bank k’s external assets in period 2 including bankruptcy costs

Ãk = Ak × Γ (16)

Γ =

Illiquidity costs︷ ︸︸ ︷
(1− γ̃1) ×

Bankruptcy costs︷ ︸︸ ︷
(1− γ̃2)
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where the definition of γ̃2 is altered in order to reflect the interbank connection

γ̃2(θ) =

0 Ak(1− γ̃1) + min[ψ(Ã−k +B), B] ≥ D +B

γ2 (1− γ̃1) + min[ψ(Ã−k +B), B] < D +B
(17)

Connecting the banks with mutual assets and liabilities directly alters

consumption in period 2 in two ways: on the one hand it effects a payment

from the island with high fundamentals to the one with low fundamentals if

at least one of them is bankrupt (risk sharing); on the other hand it transmits

bankruptcy/illiquidity costs between islands (domino effect contagion).17

There are four possible cases, which I call regions, depending on which

bank is solvent or not: (region 1) both banks solvent; (region 2) k solvent, −k
insolvent; (region 3) k insolvent, −k solvent; (region 4) both banks insolvent.

Table I summarizes all possibilities, and provides the conditions for being in

each region depending on (Ak, A−k).

Equations 18-21 state consumption in period 2 in island k for each

possibility. If both banks are solvent (region 1), consumption is the same as it

would have been in absence of interbank connection. Consumption in island k

depends only the fundamentals in of bank k,

c2(θ|θ ∈ Θ1) =
Ãk

1−min[n, x/c]
(18)

In case bank k is solvent and bank −k is not (region 2), consumption in island

k depends on the level of fundamentals for both banks,

c2(θ|θ ∈ Θ2) =
Ãk −B + ψ[B + Ã−k]

1−min[n, x/c]
(19)

If bank −k is solvent but bank k is not (region 3), consumption in island k is

higher than it would absent of an interbank connection, but does not depend

on the fundamentals of −k. Depositors in island k consume a proportion 1−ψ
17By setting agents noisy signals around the common factor, I preclude island heterogeneity

in period 1, thus illiquidity costs will play no role.

15



of total assets available to them,

c2(θ|θ ∈ Θ3) =
(1− ψ)(Ãk +B)

1−min[n, x/c]
(20)

Finally, when both banks are insolvent (region 4), depositors in island k con-

sume a proportion 1
ψ from bank k’s external assets, and ψ

1+ψ from bank −k’s

external assets,

c2(θ|θ ∈ Θ4) =

1
1+ψ Ãk + ψ

1+ψ Ã−k

1−min[n, x/c]
(21)

Table I. State-space partition

Solvency

Region Bank k Bank −k Condition

1 Yes Yes Aj(1− γ̃1) ≥ D ∀j ∈ {k,−k}

2 Yes No
A−k(1− γ̃1) < D ∧

Ak(1− γ̃1) ≥ D +B(1− ψ)− ψÃ−k

3 No Yes
Ak(1− γ̃1) < D ∧

Ã−k ≥ D +B(1− ψ)− ψÃk

4a No No Aj(1− γ̃1) < D ∀j ∈ {k,−k}

4b No∗ No
A−k(1− γ̃1) < D ∧

D ≤ Ak(1− γ̃1) < D +B(1− ψ)− ψÃ−k

4c No No*
Ak(1− γ̃1) < D ∧

D ≤ Ã−k < D +B(1− ψ)− ψÃk
∗But would have been absent interbank connection
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Connecting the banks changes expected utility from consuming in pe-

riod 2. As before, utility in island k is (strictly) increasing in the fundamentals

of bank k, though this time it is also (weakly) increasing in the fundamentals

of bank −k. Bank interconnectivity may affect the probability of consumption

in period 1 only via θ∗, i.e. through agent endogenous choice of whether to run

on the bank. Otherwise, it does not affect period 1 value.

Corollary 1. There exists a unique threshold equilibrium even if banks are

interconnected.

What effect might varying B have on the incentive of patient agents to

run on the bank? On the one hand, we can see that bank inter-connectivity has

an insurance effect. To the extent that agents are risk averse, they would prefer

a more equal consumption across islands. On the other hand, this insurance

may come at a cost. By pushing both banks over the cliff-edge of bankruptcy

costs instead of just one, connecting the islands may destroy value in some

states (the domino-effect).

Proposition 4 (Insolvency netting). If γ2 = 0 (no bankruptcy costs due to

insolvency), optimal interbank connectivity implies merging the banks (B →∞).

If γ2 > 0 the effect of interbank connectivity on stability is ambiguous

The reason interbank connectivity unambiguously decreases the prob-

ability of bank-runs if γ2 = 0, is that bankruptcy costs are incurred only via

period 1 illiquidity. The domino effect is absent due to the assumption that

agents observe a noisy signal of the common factor θ. In this case connecting

the banks can only increase expected welfare in period 2 due to the insur-

ance effect. If γ2 > 0 there is a trade-off between insurance and bankruptcy

costs. Insolvency netting has the effect of reducing interbank connectivity. In

no case does insolvency netting increase financial stability unambiguously, as is

suggested by the networks literature.

V. Comparative Statics

In the previous Section I demonstrated how higher interbank connectivity might

enhance the stability of the financial sector via the bank-run channel. Proposi-

tion 4 shows that in absence of bankruptcy costs in period 2 (γ2 = 0), interbank
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connectivity is always beneficial to stability due to its insurance effect. If, how-

ever, γ2 > 0 then interbank connectivity may also undermine stability due to

the domino effect. The prediction of the model is thus ambiguous. In this

section I present simulation results for a set of calibrated parameters, with the

aim of resolving this ambiguity in prediction.

A. Calibration: Preferences, Technology and Information

I make assumptions about the utility, technology and the distribution of θ and

νk. The utility function exhibits constant relative risk aversion:

u(ct) = 1− exp(−α ct)

where the CARA parameter α ranges between 0.1 to 4 (benchmark case: α = 1).

The values of λ are chosen so to be consistent with observed levels of deposit

rates and liquid asset holdings, x > λc. Returns on total assets are linear in θ:

Rk = R (θk, x) = xRf + (1− x)θk θk = θ + νk

where Rf is the gross risk free rate and θk the return on the long asset. I cali-

brate Rf using 3-months T-Bill rates which averaged 3.62% p.a. between 1997-

2007. The common component in returns independent from the idiosyncratic

components, who are also themselves independent and distributed normally.(
νk

ν−k

)
= N

(
0, σ2

ν

[
1 0

0 1

])

I calibrate σν using the volatility of 3-months cumulative returns on the S&P

500 (roughly 7.4%, or 16% annually for iid processes). Deviation from common

knowledge (ε) is matched to half the interquantile range of SPF18 forecasts,

1.5% per annum, or about 0.37% over three months.

18Survey of Professional Forecasters, see further details below.
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Table II. Calibration: Preferences, Technology and Information

Parameter
Reference Parameter Value(s)

Data
Reference Value(s)

CARA α 1.0

Impatient
depositors

λ 0.05

Risk free rate Rf 1.018 3-months TBill 0.88%

Return S.D.
(long asset)∗

σν 0.074
S.D. of S&P 500 3-months
cumulative return

7.4%

Signal noise ε 0.0037 SPF interquantile range 0.74%

∗Idiosyncratic component

B. Calibration: Banking Sector

Short-term deposit rates are calibrated based on financial-sector commercial

paper rates with maturity 1-3 months (source: Federal Reserve H.15 Selected

Interest Rates).19 Liquid assets x is calibrated based on the ratio of high quality

liquid assets (HQLA) to total assets. For a sample of large U.S. bank holding

companies in mid-2007, values ranged between 3% to 9% (Yankov et al., 2020).

Non-bank debt claims D are calibrated to match the leverage ratio for a sample

of the largest U.S. banks between 1997-2007: Leverage ratio = 1/(1 − D) =

25.20 Realistic values for interbank mutual claims can be gauged via data on

derivative assets and liabilities of U.S. bank holding companies from the Fed

(Annual Report of Holding Companies - FR Y-6). Gross market values vary

between 30%-150% of banks’ balance sheets.21

Finally, we need to input values for illiquidity and bankruptcy costs (γ1

19In order to match the model frequency, the annual figure needs adjustment to a 3-months
frequency, (1 + annualized rate)1/4.

20A higher value of D strengthens the domino effect, since it implies that bankruptcy costs
are borne more often.

21Note that derivative trading assets are presented by large banks as an off-balance sheet
item, which is why it can be higher than the balance sheet.
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and γ2 respectively). Since in my model γ1 doesn’t contribute to the domino

effect, I shall set it to zero. All costs will be incurred via γ2, so that the

domino effect may have it’s largest effect. γ2 determines whether interbank

connectivity enhances stability or undermines it, since it controls the magnitude

of the domino effect. Due to the sensitivity of the results to this parameter, I

use it in comparative statics rather than attempt to provide a point estimate.

In order to map the bankruptcy costs parameter γ2 into the the eco-

nomic magnitude of costs in practice, one also has to take account of the prob-

ability of default. The unconditional probability of default is not matched well

by the model: if the unconditional expectation of quarterly returns is 2.4% and

the standard deviation 7.4%, a leverage ratio of 25 imply that banks in the

model default around 3% of the time. In reality, investment grade corporate

bonds default about 0.5% of the time. This then means γ2 has an increased im-

pact compared to its real-world counterpart, implying a conservative approach

to estimating optimal interbank exposures.

Table III. Calibration: Banking Sector

Parameter
Reference Parameter Value(s)

Data
Reference Value(s)

Short-term bank
rate (short asset; net)

c 1.01
Commercial paper –
financials (3-months)

0.96%

Liquid assets x 0.06 HQLA 3% - 9%

Non-bank
debt claims

D 0.96 Leverage ratio 25

Interbank
mutual claims

B 0 - 1.5
Gross market value
of derivatives

30-150%

Illiquidity costs γ1 0

Bankruptcy costs γ2 0-0.015
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C. Calibration: Target

The main output of the model is the threshold level of expected returns at which

bank-runs occur. This is also the variable my calibration aims to match.22 It

is important to establish a benchmark probability of bank-runs that the model

would target, i.e. a level of θ∗ that would be in accord with historical experience.

Due to the rarity of bank-runs, I refrain from matching a hard target.

Rather, I will match a wide area below expected returns, using the median

forecast of average 10-year returns on the S&P 500 Index (available from the

Survey of Professional Forecasters, SPF).23 This proxies for investors’ expec-

22In order to deduce from this output a frequency at which bank-runs occur, one would
have to make a stand on the unconditional distribution of agents’ expectations.

23The Federal Reserve Bank of Philadelphia surveys a panel of professional forecasters on
variables of interest on a quarterly basis. Since 1992-Q1, they began collecting forecasts of
average 10-year returns on the S&P 500, collected on an annual basis. I use the median
forecast 2008-Q1 as a target θ∗ for the model to match.

Figure 3. S&P 500 10-year Average Returns and SPF Forecasts
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tations about the value of long term investment. Figure 3 plots the realized

10-year average returns on the S&P 500 between 1972-2020, along with the

SPF median forecast (shifted by 10 years to match realized returns). Panelists’

expectations are much less volatile than realized returns.24 Between 1992-2020,

they dropped by 450 b.p. from 10% to 5.5% per annum. I define a bench-

mark case where the time between periods is 3 months, thus I target threshold

strategies that are lower than (1 + .1)1/4 − 1 ≈ 2.5%.

D. Simulation

In this subsection I outline my simulation methodology. I rely on numerical

techniques to get calibration results. Since the model has no closed form solu-

tions, it requires a fixed-point algorithm to locate θ∗, the threshold signal below

which patient agents run on the bank. Locating this threshold strategy involves

evaluating patient agents’ expected differential utility ∆ (equation 11).

The model is set up under minimal assumptions about utility and

technology. In principle one could work with any odd function for these objects,

so long as it satisfies generic conditions described in section II. Simply evaluate

the triple integral for a candidate equilibrium θ∗0,

∫ θ∗0+ε

θ=θ∗0−ε

∫
θk

∫
θ−k

v(·)f(θk, θ−k|θ)dθkdθ−kdθ

insert the result to the fixed point algorithm that will suggest the next candidate

θ∗1; then repeat. The process is concluded after T steps when ∆(θ∗T ) ≈ 0.

It could be computationally costly to evaluate ∆ in this way, especially

due to multiple uncertainty sources (idiosyncratic risk plus uncertainty about

the common component). The combination of CARA utility and Normal Dis-

tribution addresses this issue, because it yields partially closed form solutions.25

Further details are provided in the technical appendix.

24Because of this I opt to match survey data. Asset prices are too volatile to be a good
estimate of investors’ long-term growth, and would result in an difficulty to generate a realistic
threshold strategy.

25Essentially reducing the triple integral to components of a double / single integrals. This
speeds up each evaluation from about 18 seconds to 1 second. Figure 8 demonstrates that the
two algorithms’ outputs are approximately the same.
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E. Results

Figure 4 graphs the equilibrium threshold strategy θ∗ as it varies with interbank

connectivity (B) when bankruptcy costs are: (a) zero; (b) small (0.55% for 6

months, γ2 = 0.0055 – 10% over 10 years); (c) intermediate (0.9% for 6 month,

γ2 = 0.009 – 17% over 10 years); (d) large (1.45% for 6 month, γ2 = 0.0145 –

26% over 10 years). In line with Proposition 4, in absence of bankruptcy costs

(Panel A), agents run on the bank less often (θ∗ lower) when the banks are

more highly interconnected.

For example, when the banks are not connected, agents run on the

bank when they expect long-term returns to be 4.34% per annum; when mutual

Panel A. γ2 = 0 Panel B. γ2 = 0.0055

Panel C. γ2 = 0.009 Panel D. γ2 = 0.0145

θ∗ is presented in annualized percent

Figure 4. Threshold strategy (θ∗), varying interbank connectivity (B); γ1 = 0
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claims are 150% of the balance sheet size, this number drops by 17 b.p. to 4.17%.

Compare this to intermediate bankruptcy costs in Panel C. When interbank

connectivity is 30% of the balance sheet size, agents run on the bank when

they expect long-term returns to be 5.26% per annum; when mutual claims are

150%, this number increases by 3 b.p. to 5.29%. In this case the optimal policy

is for an intermediate value of interbank connectivity.

We can see that bankruptcy costs have two effects on the probability of

bank-runs. First, all else equal, higher bankruptcy costs mean agents run on the

bank more often. This makes sense because if agents incur higher bankruptcy

costs, a higher reward is necessary to dissuade them from running on the bank.

Second, bankruptcy costs strengthen the domino effect, so that higher interbank

connectivity is less beneficial. The former increases the level of the curves in

Figure fig. 4; the latter shifts their minima to the left.

In Figure 5, I graph the level of optimal interbank connectivity, vary-

ing risk aversion and bankruptcy costs. Optimal interbank connectivity varies

between 0-150% of banks’ balance sheets. On the one hand, the higher is risk

Figure 5. Optimal Interbank Connectivity
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aversion the higher is the optimal interbank connectivity. This makes sense

because higher risk aversion implies high risk sharing benefits from interbank

connectivity. On the other hand, higher bankruptcy costs imply a lower opti-

mal interbank connectivity. Higher costs due to bankruptcy imply a stronger

domino-effect. In many of the cases, netting is not the optimal policy.

It is important to establish to economic magnitude of these effects on

financial stability. A change of 3-17 b.p. in θ∗ may seem small at first glance,

especially considering the high volatility of equity markets. However, although

it is true that long-term growth varies widely, the expectation of it varies much

less (see Figure 3). The magnitude of changes should be compared to the latter.

The interquantile range of forecasts of long term growth is 300 basis points.

Overall the model does a good job at matching a reasonable level of the

threshold strategy. Values of θ∗ ranging between 4.2%-6% p.a. (when γ1 = 0)

imply a spread between the threshold strategy and the deposit rate of 30-300

b.p., depending on the level of γ2 and risk aversion. The size of this spread

can be increased by assuming higher values of illiquidity costs. For example,

assuming illiquidity costs of γ1 = 0.0155 and no bankruptcy costs γ2 = 0

implies roughly 300 b.p. increase in θ∗ (see Figure 6). The effect of connecting

the banks agrees with the model’s predictions: in absence of bankruptcy costs,

the optimal policy is to completely merge the banks – so as to achieve maximum

risk sharing. The optimal level of interbank exposures decreases as we increase

Panel A. γ1 = 0.0055 Panel B. γ1 = 0.0155

θ∗ is presented in annualized percent

Figure 6. Threshold strategy (θ∗), varying interbank connectivity (B); γ2 = 0
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bankruptcy costs. Illiquidity costs γ1 have no impact on the domino-effect

because banks are only heterogeneous in period 2; γ1 would contribute toward

the domino-effect if banks were heterogeneous in period 1.

VI. Discussion

This paper analyzes the effects of interbank connectivity on financial stability,

with reference to a concrete policy – insolvency netting. Netting reduces the size

of interbank connectivity by allowing banks to settle mutual assets/liabilities

on a net basis. The rationale for this is to stabilize the financial system by pre-

venting the spillover of bankruptcy costs in the event of a crisis (domino-effect

contagion). However, this is done by concentrating the losses at a particu-

lar group of creditors, undoing the risk-sharing effect that an interconnected

financial system provides.

To study the effect of interbank credit exposures in equilibrium, I

propose a two period bank-run model with bank heterogeneity in period 2.

Bank inter-connectivity has two opposing effects on stability: a domino-effect

and an risk-sharing effect. In absence of bankruptcy costs (γ2 = 0), I find

that insolvency netting decreases stability ; in case there are costs also due to

insolvency (γ2 > 0), the effect of netting is ambiguous.

These results stand in stark contrast to previous research on contagion

in financial markets. Most of the work in this field neglect to take account of

the endogenous response of rational agents to the limiting of financial inter-

connectivity. The welfare effect from limiting inter-connectivity has no impact

on financial stability in those models. In this paper, the financial network serves

both as insurance to participants in financial markets, and as a shock transmis-

sion mechanism. Financial stability is achieved by maximizing investors long

term (period 2) value. Whether insolvency netting does this is questionable, as

it brings about two opposing effects.

In order to decide which of the two effects is stronger, one must com-

pare the premium that a patient agent would be willing to pay for such in-

surance – and then compare it with the expected destruction of value due to

domino-effect contagion. Recovery rates in financial sector bankruptcies could
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be as low as 50% (Denison, Sarkar, and Fleming, 2019), suggesting rather high

bankruptcy costs. Such bankruptcy costs are likely to trump any insurance

benefits that an interconnected financial network provides.

It is unclear, however, to what extent low recovery rates should be

attributed to bankruptcy costs rather than low fundamentals. A bankrupt

company may have made bad investment decisions, and as a result the value of

its assets is marked down when this information reaches the market. Consider

the case of Lehman Brother for example. On the one hand, general creditors

recovered only about 31% of their claims,26 a low number even compared to

historical experience. On the other hand, only about 2.5% (roughly $9 billion)

are estimated to be the expenses due to the liquidation process (Denison et al.,

2019).

It took more than a decade to liquidate Lehman’s estate. It seems

unlikely that these losses are the result of a prolonged fire-sale. They could

in part be due to the loss of Lehman’s franchise value, and/or difficulty of

asset valuation in a market with severe asymmetric information. But even the

latter is not a pure bankruptcy loss, insofar as the loans underlying many of

Lehman’s structured finance suffered only modest losses. What matters is the

global destruction of value, not simple transfers.

The questions raised in this paper are relevant for policy makers

around the world. Most countries set up priority rules for the financial system

based on incomplete view of the consequence of this legislation. This paper

challenges the view that prompted recent changes in U.S. legislation – that dis-

tributional effects of netting have no impact on systemic stability. American

law is relevant to other advanced economies, as SIFIs choose the jurisdiction

which governs their master netting agreements.

From a legal perspective, netting is in conflict with a central principle

in bankruptcy law – mandatory stay. By disallowing creditors to collect their

assets, mandatory stay aims to allow an orderly liquidation of the estate in

order to dispense to creditors maximal value on pro-rata basis. Netting is a

form of exclusion from mandatory stay: creditors who are allowed to net are in

effect able collect their assets by not paying their liabilities.27

2621% if this figure is discounted by corporate bond yield.
27There are two main categories of claims on the bankrupt that are excluded from the
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Rather than being based on a legal principle, the rationale for the

right to net is based on two consequentialist arguments. First, in absence of the

right to set-off, OTC dealer markets may suffer a reduction in intermediation

services.28 Second, if a crisis occurs – the inability to set-off will contribute

to domino-effect contagion. My paper adds another consequentialist argument

to the latter, demonstrating that netting of interbank liabilities may in fact

decrease financial stability due to the bank-run channel.

A. Proof of Proposition 1

Theorem 1 in Goldstein and Pauzner (2005) shows that a unique threshold-

equilibrium exists, and is the only equilibrium possible. Their result follows

from two separate properties of the differential utility function v: (1) single

crossing; (2) one-sided strategic complementarities. The latter means that v is

decreasing in n (proportion of agents who withdraw early) whenever v is pos-

itive. With single crossing, given that all agents use a threshold-equilibrium,

then there exists a unique threshold-equilibrium. With one-sided strategic com-

plementarities, any equilibrium must be a threshold-equilibrium.

A. Definitions and Preliminary Results

A mixed strategy for a patient agent i is a function si : [−ε, 1 + ε] → [0, 1],

for each possible signal, the agent withdraws early with probability si. Let

ñ(θ) be a random variable with support [0, 1] as the total number of agents

that withdraw early in state θ. Let ñk = ñ(θ) be the number of agents who

withdraw early in island k. ñk is defined by its CDF Fθ,k(n):

Fθ(n) = P[ñ(θ) ≤ n] = P
[
λ+ (1− λ)

∫ 1

i=0
si(θ + εi)di ≤ n

]
estate: claims with right to set-off and secured claims. The main difference between the two
categories is that behind the exclusion of a secured claim from mandatory stay stands a firm
legal principle, namely security defeats stay – since the debtor essentially granted the creditor
ownership of the security. Netting negates mandatory stay directly, since there is no transfer
of ownership. Moreover, since there is no ownership transfer, such contracts escape negative
pledges – meaning third party creditors cannot challenge them in courts (Wood, 2007).

28Because taking large positive and negative positions in the trade book would be more
risky and thus more costly.
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Let nx(θ) be the inverse CDF

nx(θ) = inf{n : Fθ(n) ≥ x}

A patient agent decides to withdraw early with probability 1, si = 1,

if ∆(·, θi) < 0, withdraw late with probability 1, si = 0, if ∆(·, θi) > 0, and is

indifferent between the two (and therefore could use any mix of pure strategies)

if ∆(·, θi) = 0. Recall the definition of ∆ (eq. 11-12):

∆(c, θi, s−i) =
1

2ε

∫ θi+ε

θi−ε

(∫ 1

n=λ
v(θ, n)dFθ(n)

)
︸ ︷︷ ︸

E[v(θ,ñ(θ))|θ]

dθ

v(c,θ, n) = u(c2)− [qu(c) + (1− q)u(c2)]

A threshold strategy is characterized by a single number, θ∗, that a

patient agent – if she observes a signal higher than that number – will with-

draw late, and otherwise she will withdraw early. A threshold-equilibrium is

one in which all agents’ follow threshold strategies. If all agents follow the

same strategy, the proportion of agents who withdraw early in each island n is

deterministic.

There are three differences between GP and the current framework:

limiting liquidation of the asset at x ≤ 1

regards consumption of the patient agent in period 2, and limiting the

liquidation of the asset at x. Period 2 consumption (eq. 18-21) is given by

c2(θ) =



Ak
1−min[n,x/c] if Aj ≥ D ∀j ∈ {k,−k}
Ak−B+ψ[B+A−k]

1−min[n,x/c] if A−k < D ∧ Ak −B + ψ[B +A−k] > D

(1− ψ)(Ak +B) if Ak < D ∧ A−k −B + ψ[B +Ak] > D

Ak+ψA−k
1+ψ else

Ak = (1−min[nc, x])R(θk)(1− γ1 × 1n>x/c)(1− γ21k insolvent)

where Ak is the bank’s external assets, which may suffer losses due to illiquid-

ity (insufficient period 1 value, n > x/c) and insolvency (insufficient period 2

value). Lemma 1 (as in GP) states basic facts about the function ∆(c, θi). Let
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(ñ+ a)(θ) = ñ(θ + a).

Lemma 1 (Lemma 1). (i) ∆
(
θi, ñ(·)

)
is continuous in the threshold strategy θi;

(ii) ∆
(
θi+a, (ñ+a)(·)

)
is continuous and non-decreasing in a; (iii) ∆

(
θi+a, (ñ+

a)(·)
)

is strictly increasing in a if two conditions are satisfied: θi + a < µθ + ε;

and ñ(θ) < 1/c with positive probability for θ ∈ [θi + a− ε, θi + a+ ε].

Proof of Lemma 1. Note that (i) means ∆ is continuous in θi given a certain

distribution ñ(·) that doesn’t change with θi; a change in θi only changes the

limits of the integration. The integrand
∫ 1
n=λ v(θ, n)dFθ(n) is bounded because v

is bounded. Continuity follows from the fact that
∫ 1
n=λ v(θ, n)dFθ(n) is Riemann

integrable over its domain [λ, 1]. Riemann integrability follows from the fact

that
∫ 1
n=λ v(θ, n)dFθ(n) can be partitioned into monotone functions, e.g. in case

γ2 = 0:∫ 1

n=λL

v(θ, n)dFθ(n) =

∫ x/c

n=λL

v(θ, n)dFθ(n) +

∫ 1

n=x/c
v(θ, n)dFθ(n)

and each of those is Riemann integrable (because it is monotone, as we are not

changing the distribution ñ(·), and v is monotone on each sub-interval), and

thus each is continuous in θi. In case γ2 > 0, partition is into potentially 9

parts, each of which is monotone in θ. The sum of two or more continuous

functions is continuous. (ii) Continuity with respect to a follows because v is

bounded and ∆ is an integral over a segment [θi − ε, θi + ε]. Note that the

distribution ñ is only shifted by a constant a. Thus if we compare any θ with

θ + a, ñ is identical, but at θ + a fundamentals are higher, so R(θ) is higher

and consequently v. Since v is, ceteris paribus, non-decreasing in θ, so is ∆.

(iii) In continuation to (ii), if the two conditions are kept then v is strictly

increasing for at least part of the interval [θi − ε, θi + ε], thus its integral is

strictly increasing. This completes the proof.

Definition 5 (Strategic Complementarities). A game is said to exhibit strategic

complementarities if the incentive of agent i to increase si is increasing in s−i.

More precisely, if si ≥ ŝi and s−i ≥ ŝ−i – which implies Fθ(n) ≤ F̂θ(n) – we

have

u(si, s−i, θ)− u(ŝi, s−i, θ) ≥ u(si, ŝ−i, θ)− u(ŝi, ŝ−i, θ)
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A game is said to exhibit one-sided strategic complementarities if the incentive

of agent i to increase si is increasing in s−i whenever that incentive is positive.

Lemma 2 (Strategic Complementarities). The game played by patient agents

exhibits strategic complementarities.

Proof of Lemma 2. Simplifying v yields v(n, ·) = q
(
u(c2)−u(c)

)
. Observe that

the probability of consumption in period 1 is certain (q = 1) for n ≤ x/c, and

is decreasing from 1 to x
c for n ∈ (x/c, 1]. Moreover, due to bankruptcy costs,

for a fixed θ, Ak may have at most two discontinuities: one exactly at n = x/c;

the other potentially at a point n < x/c (since Ak decreases in n and may hit

insolvency while still liquid). Thus, when n > x/c, Ak is fixed. ∂v
∂n < 0 for

n ∈ [λ, x/c], and ∂v
∂n > 0(< 0) in n for n ∈ (x/c, 1] when u(c2)−u(c) < 0 (> 0).

In case v(n, ·) > 0 for n ∈ (x/c, 1), then v is decreasing because c2 > c and

because q is decreasing.

This proves strategic complementarities in a single island k, and for a

fixed n. Observe that
∂A−k
∂n ≤ 0, and that ∂c2

∂A−k
≥ 0. Thus due to the chain

rule: ∂c2
∂n ≤ 0, increasing the incentive to run on the bank.

Lemma 3 (Single Crossing). Keeping θ fixed, there exists n′ ∈ (λ, 1) such that

v(n,θ) ≥ 0 ∀n < n′ and v(n,θ) ≤ 0 ∀n ≥ n′.

Proof of Lemma 3. Single crossing is implied by strategic complementarities. If

v(n, ·) < 0 for some n ∈ (x/c, 1), it is negative throughout, so that v may cross

(up to discontinuity) from positive to negative at most once.

The statement in Lemma 3 is for a fixed a θ. Observe that if all agents

follow a threshold strategy, ∂n
∂θk
≤ 0, and therefore ∂c2

∂θj
≥ 0 ∀j ∈ {k,−k}: better

fundamentals in either island imply (weakly) higher consumption in period

2. Thus varying θ over the interval [θi − ε, θi + ε], v could cross zero (up to

discontinuity) at most once.

B. Unique Threshold-equilibrium

Proof of Proposition 1. The proof follows GP Proposition 1 closely. The only

difference is that in my model v crosses zero only once up to a discontinuity,
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which doesn’t alter the details of the proof much.

A threshold-equilibrium with threshold θ∗ exists iff, given that all other

agents use therehold strategies θ∗, each agent finds it optimal to withdraw early

when she observes a signal below θ∗, and late if above it:

∆
(
c, θi, ñ(·, θ∗)

)
< 0 ∀θi < θ∗ (22)

∆
(
c, θi, ñ(·, θ∗)

)
> 0 ∀θi > θ∗ (23)

By continuity (Lemma 1i), a patient agent is indifferent when she observes θ∗

∆
(
c, θ∗, ñ(·, θ∗)

)
= 0 (24)

I now show given that eq. 24 holds, eqs. 22-23 hold as well. Assume

θi < θ∗, and partition each interval [θ∗ − ε, θ∗ + ε] and [θi − ε, θi + ε] to two

complementary intervals: the intersection between the two, and its complement

for each interval.

Let Y = [θi−ε, θi+ε]∩[θ∗−ε, θ∗+ε] be the intersection (possibly empty)

of the interval over which ∆
(
c, θi, ñ(·, θ∗)

)
and ∆

(
c, θ∗, ñ(·, θ∗)

)
are evaluated,

and two disjoint intervals Zi = [θi − ε, θi + ε] \ Y and Z∗ = [θ∗ − ε, θ∗ + ε] \ Y .

This yields

∆
(
c, θ∗, ñ(θ)

)
=

1

2ε

∫
θ∈Y

v
(
θ, n(θ)

)
dθ +

1

2ε

∫
θ∈Z∗

v
(
θ, n(θ)

)
dθ (25)

∆
(
c, θi, ñ(θ)

)
=

1

2ε

∫
θ∈Y

v
(
θ, n(θ)

)
dθ +

1

2ε

∫
θ∈Zi

v
(
θ, n(θ)

)
dθ (26)

Equation 25 must equal zero by assumption. Because θi < θ∗, the part in-

tegrated over the complement interval is non-positive (due to single crossing,

Lemma 3). When comparing the second part in each equation (the complement

of intersection), we must have

1

2ε

∫
θ∈Z∗

v
(
θ, n(θ)

)
dθ >

1

2ε

∫
θ∈Zi

v
(
θ, n(θ)

)
dθ

This implies eq. 22 must be negative. A diametrical argument holds for eq. 23.

Due to strategic complementarities (Lemma 2), GP’s argument follows through
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in full.

B. Proof of Proposition 4

Proof. We are interested in the effect of netting on the probability of runs. The

proof utilizes the implicit function theorem on this indifference condition to

show the effect of the interbank mutual claim B on the probability of runs θ∗.

The result states that if γ2 = 0 then ∂θ∗

∂B < 0. Since netting decreases B, the

result shows netting increases the probability of bank runs.

Equation 11 is the indifference condition that determines the optimal

threshold signal θ∗. In equilibrium, all agents use the threshold strategy θ∗,

and their indifference condition is equal to zero.

∆(θ∗, ·) =
1

2ε

∫ θ∗+ε

θ∗−ε

(∫ 1

n=λ
v(θ, n)dFθ(n)

)
︸ ︷︷ ︸

E[v(θ,n)|θi=θ∗]

= 0

Recall that v = q
(
u(c2)− u(c)

)
. Thus we can write

∆(θ∗, ·) = E[q
(
u(c2)− u(c)

)
|θi = θ∗] (27)

It is clear from eq. 27 that ∂∆(θ∗,·)
∂E[u(c2)|θi=θ∗] > 0. Increasing expected utility from

consumption in period 2 increases the incentive to withdraw late. Note also that
∂∆(θ∗,·)
∂θ∗ ≥ 0 because changing θ∗ varies the limits of the integration leaving the

distribution of early withdrawals on the interval [θ∗−ε, θ∗+ε] unchanged. Due

to the implicit function theorem, we have

∂θ∗

∂E[u(c2)]
< 0 (28)

Now consider the effect of B on E[u(c2)|θi = θ∗], given that γ2 = 0. In

equilibrium, every state θ is associated with c2 in island k and −k. Denote by

t = t(θ) ∈ R the transfer from k to −k that is due to the interbank connection

B; it is either:
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• t > 0 −k insolvent; if k is also insolvent, it has a higher return than −k;

• t < 0 k insolvent; if −k is also insolvent, it has a higher return than k

Observe that, due to symmetry of fθ, for every state θ+ = (θ, θ′)

there exists θ− = (θ′, θ) such that: (1) f(θ+) = f(θ−); (2) t(θ+) = −t(θ−).

Generally, whenever t > 0 (< 0) period 2 consumption in island k (−k) is higher

than that of island −k (k).

Let Θ+ be a subspace of Θ such that (θ, θ′) ∈ Θ+ iff t(θ′, θ) > 0;

Θ+ is a set of unique states of the world (up to island names). Denote by

Θ− its mirror image sub-space Θ− = {(θ′, θ) : (θ, θ′) ∈ Θ+}, and write c2 as

the consumption in island k in case B = 0. When computing expected utility

differential in island k we have

∆(θ∗, ·) =
∫
θ+∈Θ+ q

(
u(c2 + t)− u(c)

)
dθ+f(θ+|θi = θ∗) (29)

+
∫
θ−∈Θ− q

(
u(c2 − t)− u(c)

)
f(θ−|θi = θ∗)dθ−

+
∫
θ∈Θ\(Θ+∪Θ−) q

(
u(c2)− u(c)

)
f(θ|θi = θ∗)dθ

=
∫
θ+∈Θ+

(
q(θ+)

(
u(c2(θ+) + t)− u(c)

)
+ q(θ−)

(
u(c2(θ−)− t)− u(c)

))
f(θ+|θi = θ∗)dθ+

+
∫
θ∈Θ\(Θ+∪Θ−) q

(
u(c2)− u(c)

)
f(θ|θi = θ∗)dθ

Note that when t > 0, the fundamentals in island k are lower than

in −k. Since agents observe a signal informing them on the common factor of

θk, nk = n−k in all states, therefore the probability of consumption in period

1 is always the same in both islands. Also, observe that varying B can only

change q via θ∗, as it doesn’t affect liquid assets x. Thus, keeping θ∗ fixed, q is

unchanged when varying B. We need to show

q(θ+)u(c2(θ+) + t) + q(θ−)u(c2(θ−)− t) ≥ q(θ+)u(c2(θ+)) + q(θ−)u(c2(θ−))

which is true because: (1) q(θ+) = q(θ−); (2) c2(θ+) + t ≤ c2(θ−)− t. More-

over, in the limit as B → ∞, both banks are in effect consolidated, so we

have

lim
B→∞

t =
c2(θ−)− c2(θ+)

2
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Because agents are risk averse,

u(c2(θ+) + t) + u(c2(θ−)− t) ≥ u(c2(θ+)) + u(c2(θ−))

Finally, ∂Eu(c2)
∂B > 0, so together with eq. 28 we get the desired result.

A. Conditions for using the Implicit Function Theorem

The main condition for using the implicit function theorem is continuous non-

zero first derivatives of ∆ in a small open ball around the values in the parameter

space that make ∆(θ∗, ·) = 0. This condition holds for ∂∆
∂θ∗ due to Lemma 1.

Varying B doesn’t change the limits of the integration of the integral in ∆. The

partial derivative ∂∆
∂B is continuous because ∂v

∂B is continuous. The latter is the

case because varying B doesn’t affect outside assets Ak, A−k; rather it varies

only the interbank transfer t.

C. Proof of Proposition 2

First pass: in the limit as ε→ 0, fixed θ∗.

Let P be the unconditional probability that θ < θ∗: P =
∫ θ∗
−∞ fθdθ.

Then the unconditional expectation of utility in period 0 is given by:

= Pλu(c) + (1− λ)E[u (c2) |θ > θ∗] + (1− P )xcu(c) +
(
1− x

c

)
(1− λ)E[u(c2)|θ < θ∗]

= Pλu(c) + (1− λ)E[u (c2)] + x
cE[u(c)− (1− λ)u(c2)|θ < θ∗]

All terms here are positive. The last term is positive because, in equi-

librium, expected utility from withdrawing late is lower than expected utility

from withdraw early when θ < θ∗. The first derivative of this object is:

= Pλu′(c) + (1− λ)E[u′ (c2)]
(
−x(1−x)c

c−x

)
− x

c2
E[u(c)− (1− λ)u(c2)|θ < θ∗] + x

cE[u′(c) + (1− λ)x(1−x)c
c−x u′(c2)|θ < θ∗]

We have two positive terms and two negative terms. Each of the
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positive terms is decreasing, and each of the negative

Brute force did not yield the required outcome. Looking at the prob-

lem from a different perspective.

The deposit rate which maximizes expected utility, conditional on no

run:

max
c

∫ ∞
θ∗

[
λu(c) + (1− λ)u

(
1− λc
1− λ

R(θ)

)]
dθ (30)

The first order condition is given by:∫ ∞
θ∗

λ

[
u′(c)− u′

(
1− λc
1− λ

R(θ)

)
R(θ)

]
dθ − ∂θ∗

∂c

[
λu(c) + (1− λ)u

(
1− λc
1− λ

R(θ∗)

)]
= 0(31)

The second order condition is given by:∫ ∞
θ∗

λ

[
u′′(c) +

λ

1− λ
u′′
(

1− λc
1− λ

R(θ)

)
R(θ)2

]
dθ

−2
∂θ∗

∂c
λ

[
u′(c)− u′

(
1− λc
1− λ

R(θ∗)

)
R(θ∗)

]
−∂

2θ∗

∂c2

[
λu(c) + (1− λ)u

(
1− λc
1− λ

R(θ∗)

)]

In principle this second order condition can be positive, because ∂2θ∗

∂c2

can be shown to be negative. However, this would require the second order

term to overturn two strongly negative terms that are first order.

The optimal value of the deposit rate, conditional on a bank-run, is

roughly c ≈ (1 − x)ER/(1 − x/c), which makes consumption of agents who

managed to get cash out the same as those who didn’t (the exact value must

take account that a higher deposit rate means more impatient consumers losing

all value). This can be shown to be lower than the deposit rate which is optimal

conditional on no run.

Solving this is a bit like the monopoly problem I’m solving for Andre.

It can be calculated from the welfare loss

Given that we have a unique value of c that maximizes ex-ante utility
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conditional on no runs

D. Technical Appendix

This appendix describes in detail my simulation methodology. I make assump-

tions about the utility, technology and the distribution of θ and νk to simplify

expressions of the function ∆ (expected differential utility):

1. The utility function exhibits constant relative risk aversion:

u(ct) = 1− exp(−α ct)

2. Returns on total assets are assumed to be linear in θ:

Rk = R (θk, x) = xRf + (1− x)θk

where Rf is the gross risk free rate and θ the return on the long asset.

3. The common and idiosyncratic components of returns are all pairwise

independent and distributed normally
θ

νk

ν−k

 = N



µθ

0

0

 ,

σ2
θ 0 0

0 σ2
ν 0

0 0 σ2
ν




Recall θk = θ+ νk. Let φ and Φ be (respectively) the pdf and CDF of

a normal random variable. Recall that (in island k) the return θk and the level

of period 2 assets Ak are given by:

Ak(θk) = (1−min[nc, x])R(θk)Γ

Rk = R(θk, x) = xRf + (1− x)θk

It is useful to work with their inverse:

A−1 = θk(A, x, c, θ) =


(

A
1−γ̃1

1
1−min[nc,x] − xRf

)
1

1−x if A ≥ D(
A
Γ

1
1−min[nc,x] − xRf

)
1

1−x if A < D
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R−1 = θ(R, x) = (R− xRf )/(1− x)

For a given θ, the state-space is two dimensional: one axis for νk and another

for ν−k. I partition the state-space into 4 regions, based on whether k and −k
are bankrupt in period 2. Region 4 is sub-partioned to 3, depending on whether

k (−k) is insolvent due to the interbank connection (see Table I).

The boundaries between regions are presented in table IV. These are

used to partition the integral
∫
θk∈R

∫
θ−k∈R · · · into sums of integrals on mutually

exclusive sub-spaces – one sum for each region:

∆ (θi = θ∗, θ∗) =
∑

m∈{1,2,3,4a,4b,4c}

∆m (32)

∆(θ∗, θi, ·) =

∫ θi+ε

θ=θi−ε

∫
θk∈R

∫
θ−k∈R

q
(
u(c2)− u(c)

)
fθ(θk, θ−k|θ)dθkdθ−k

Table IV. State-space partition: boundaries

Region θk θ−k

Θ1 θj ≥

θ̂1︷ ︸︸ ︷(
D

1− γ̃1

1

1−min[nc, x]
− xRf

)
1

1− x
for j ∈ {k,−k}

Θ2 θk ≥

θ̂2(A−k)︷ ︸︸ ︷(
D +B(1− ψ)− ψA−k

1− γ̃1

1

1−min[nc, x]
− xRf

)
1

1− x
θ−k < θ̂1

Θ3 θk < θ̂1 θ−k ≥ θ̂2(Ak)

Θ4a θj < θ̂1 for j ∈ {k,−k}

Θ4b θk < θ̂2(A−k) θ−k < θ̂1

Θ4c θk < θ̂1 θ−k < θ̂2(Ak)
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A. Region 1

Both banks are solvent, Ak ≥ D ∧ A−k ≥ D. Bank −k is solvent, given θ, with

probability
(

1 − Φ
(
θ̂1, θ, σν

))
. Otherwise bank −k has no effect on (period

2) expected utility in island k (given θ), which is given by

q(θ)

∫ ∞
θk=θ̂1

u

(
Ak

1−min[n, x/c]

)
φ(θk, θ, σν)dθk

Due to CARA utility we have

= − 1

σν
√

2π

∫ ∞
θk=θ̂1

e
−α Ak

1−min[n,x/c] e
− 1

2σ2ν
(θk−θ)

dθk

= − 1

σν
√

2π

∫ ∞
θk=θ̂1

e
−α

(
c− c−1

1−min[n,x/c]

)(
xRf+(1−x)θk

)(
1−γ̃1

)
e
− 1

2σ2ν
(θk−θ)

dθk

The assumption of CARA utility with normal distribution, together with the

linear (in θk) functional form of returns Rk, means we can complete the square

to get a shifted mean normal distribution (because u is exponential function

linear in θk). Let b1 be the coefficient on θk due to the utility function, and a1

the free coefficient:

a1 = −α
(
c− c− 1

1−min[n, x/c]

)
xRf (1− γ̃1)

b1 = −α
(
c− c− 1

1−min[n, x/c]

)
(1− x)(1− γ̃1)

This results in

= −ea1+b1θ+σ2
ν(b1)2/2 1

σν
√

2π

∫
θk∈[θ̂1,∞) e

− 1

2σ2ν
(θk−(θ+b1σ2

ν))
dθk

= −ea1+b1θ+σ2
ν(b1)2/2

(
1− Φ

(
θ̂1, θ + b1σ

2
ν , σν

))

Thus we have

Z1(θ) =
[
1− Φ(θ̂1, θ, σν)− ea1+b1θ+(b1σν)2/2

(
1− Φ

(
θ̂1, θ + b1σ

2
ν , σν

)] )(
1− Φ

(
θ̂1, θ, σν

))
=
{

1− Φ(θ̂1, θ, σν)− exp
(
− α

(
c− c− 1

1−min[n, x/c]

)(
xRf + (1− x)θ

)(
1− γ̃1

)
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+

[
α

(
c− c− 1

1−min[n, x/c]

)
(1− x)

(
1− γ̃1

)
σν

]2

/2
)
×

(
1− Φ

(
θ̂1, θ − α(1− x)

(
c− c− 1

1−min[n, x/c]

)(
1− γ̃1

)
σν .

2, σν
))

}
×
(

1− Φ
(
θ̂1, θ, σν

)
∆1(θ∗) =

∫ θ∗+ε

θ=θ∗−ε
q(θ)Z1(θ)dθ

B. Region 2

Bank k solvent, −k insolvent, Ak+ψ(A−k+B) ≥ D+B ∧ A−k < D. The lower

boundary of the integral on θ−k, A
−1( 1

ψ (B(1−ψ)+D−Ak)) is derived from the

condition that k stays solvent, i.e. the inequality Ak + ψ(A−k + B) ≥ D + B.

Period 2 consumption in island k depends on how deep is −k’s insolvency, and

is given by

c2(θ |θ ∈ Θ2) =

(
c− c− 1

1−min[n, x/c]

)(
xRf (1− γ̃1 + ψΓ) +

(1− x)((1− γ̃1)θk + ψΓθ−k)
)
− (1− ψ)B

1−min[n, x/c]

We can disentangle the component due to the interbank connection in u(c2(θ |θ ∈
Θ2)), with the coefficients (for completing the square) being:

ak2 = −α
((

c− c− 1

1−min[n, x/c]

)
xRf (1− γ̃1)− (1− ψ)B

1−min[n, x/c]

)
a−k2 = −α ψ

(
c− c− 1

1−min[n, x/c]

)
xRfΓ

bk2 = −α
(
c− c− 1

1−min[n, x/c]

)
(1− x)(1− γ̃1)

b−k2 = −α ψ
(
c− c− 1

1−min[n, x/c]

)
(1− x)Γ

When completing the square on the non-constant component (belonging to k),

this yields

Z2(θ,A−k) = ea
k
2+bk2θ+(bk2σν)2/2
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1

σν
√

2π

∫ ∞
θk=θ̂2(A−k)

e
− 1

2σ2ν
(θk−(θ+σ2

νb
k
2))
dθk

= ea
k
2+bk2θ+(bk2σν)2/2

(
1− Φ

(
θ̂2(A−k), θ + σ2

νb
k
2, σν

))

(period 2) expected utility (given θ) in island k is given by

∆2(θ∗) =

∫ θ∗+ε

θ=θ∗−ε
q(θ)

∫ θ̂1

θ−k=−∞

[
1− Φ(θ̂2(A−k), θ, σν)− Z2(θ,A−k)×

exp(a−k2 + b−k2 θ−k)
]
φ(θk, θ, σν)dθkdθ

=

∫ θ∗+ε

θ=θ∗−ε
q(θ)

{∫ θ̂1

θ−k=− x
1−x

[
1− Φ(θ̂2(A−k), θ, σν)− Z2(θ,A−k)×

exp(a−k2 + b−k2 θ−k)
]
φ(θk, θ, σν)dθk +[

1− Φ(θ̂2(0), θ, σν)− Z2(θ, 0)
]

Φ(− x

1− x
, θ, σν)

}
dθ

In this region we cannot use completion to square because of the expression Z2

inside the integral on θk. Moreover, we cannot use integral2 because the bound-

ary of the integral on θk depends on θ, thus we have to use nested integrals.

C. Region 3

Bank k insolvent, −k solvent, Ak < D ∧ A−k + ψ(Ak + B) ≥ D + B. The

lower boundary of the integral on θ−k, A
−1(B(1 − ψ) + D − ψAk)) is derived

from the condition that −k stays solvent, i.e. the inequality A−k+ψ(Ak+B) ≥
D + B. Period 2 consumption in island k doesn’t depend on −k’s assets, but

the boundary of the integral does depend on it, as well as the probability that

−k remains solvent. Those are given by

c2(θ |θ ∈ Θ3) = (1− ψ)
((
c− c−1

1−min[n,x/c]

) (
xRf + (1− x)θk

)
Γ + B

1−min[n,x/c]

)
Z3(Ak) = 1− Φ

(
θ̂2(Ak), θ, σν

)
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The coefficients in this region are

ak3 = −α(1− ψ)

(
c− c− 1

1−min[n, x/c]

)
xRfΓ

a−k3 = −α(1− ψ)
B

1−min[n, x/c]

bk3 = −α(1− ψ)

(
c− c− 1

1−min[n, x/c]

)
(1− x)Γ

(period 2) expected utility (given θ) in island k is given by

∆3(θ∗) =
∫ θ∗+ε
θ=θ∗−ε q(θ)

∫ θ̂1
θk=−∞ Z3(Ak)× u (c2(θ |θ ∈ Θ2))φ(θk, θ, σν)dθkdθ

=
∫ θ∗+ε
θ=θ∗−ε q(θ)

{∫ θ̂1
θk=− x

1−x
Z3(Ak)× u (c2(θ |θ ∈ Θ2))φ(θk, θ, σν)dθk

+ Z3(0)
(
1− exp(a−k3 )

)
Φ
(
− x

1−x , θ, σν

)
}dθ

In this region we cannot use completion to square because of the expression Z3

inside the integral on θk. Moreover, we cannot use reduce further the integral

because the boundary depends on θk, thus we have to use nested integrals.

C.1. Region 4a

Both banks are insolvent, and both would have been insolvent even when the

other bank is solvent: Ak < D ∧ A−k < D. Period 2 consumption in island k

is given by:

c2(θ |θ ∈ Θ4a) =
Ak + ψA−k

(1 + ψ)(1−min[n, x/c])

One can decompose expected utility from withdrawing late in this region to two

components independent from one another,

∫ θi+ε

θ=θi−ε
q(θ)

∫ θ̂1

θk=−∞

∫ θ̂1

θ−k=−∞
u(c2(θ |θ ∈ Θ4a))φ(θk, θ, σν)φ(θ−k, θ, σν)dθ−kdθkdθ =∫ θi+ε

θ=θi−ε
q(θ)

(
Φ(θ̂1, θ, σν)2 −∫ θ̂1

θk=− x
1−x

e
− αAk

(1+ψ)(1−min[n,x/c])φ(θk, θ, σν)dθk

∫ θ̂1

θ−k=− x
1−x

e
−

αψA−k
(1+ψ)(1−min[n,x/c])φ(θ−k, θ, σν)dθ−k

)
dθ
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and then complete the square for each. The expression Φ(θ̂1, θ, σν)2 comes from

adding 1 to the utility function. The lower boundary of the integral is −∞ for

the constant component of utility, but is 1 x
1−x for the one depending on assets,

since in that case assets are simply zero. The coefficients for completing the

square are:

ak4 = −α
(
c− c− 1

1−min[n, x/c]

)
xΓ× 1

1 + ψ

a−k4 = ak4 × ψ

bk4 = −α
(
c− c− 1

1−min[n, x/c]

)
(1− x)Γ

1

1 + ψ

b−k4 = bk4 × ψ

This yields

∆4a =

∫ θi+ε

θ=θi−ε
q(θ)

{
Φ(θ̂1, θ, σν)2−

[(
Φ(θ̂1, θ + bk4σ

2
ν , σν)− Φ(− x

1− x
, θ + bk4σ

2
ν , σν)

)
× eak4+bk4θ[(b

k
4)2σν ]2/2 + Φ(− x

1− x
, θ, σν)

]
×

[(
Φ(θ̂1, θ + b−k4 σ2

ν , σν)− Φ(− x

1− x
, θ + b−k4 σ2

ν , σν)

)
× ea

−k
4 +b−k4 θ[(b−k4 )2σν ]2/2 + Φ(− x

1− x
, θ, σν)

]}
dθ

This expression depends only on θ, reducing the triple to a single integral.

C.2. Region 4b

Both banks are insolvent, but k’s insolvency is due to −k and not vice versa.

The condition for this is: Ak+ψ(A−k+B) < D+B ∧ A−k < D (mirror of region

2 in the first inequality). Since both banks insolvent, period 2 consumption is

the same as in region 4a:

c2(θ |θ ∈ Θ4b) =
Ak + ψA−k

(1 + ψ)(1−min[n, x/c])

so that k’s integral (the non-constant component) has closed form as before in

region 4a (with different boundaries)

Φ(θ̂2(A−k), θ + bk4σ
2
ν , σν)− Φ(θ̂1, θ + bk4σ

2
ν , σν)
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The component depending on −k doesn’t have closed form because the bound-

aries of k’s integral depend on −k. We are left with

∆4b =

∫ θi+ε

θ=θi−ε
q(θ)

∫ θ̂1

θ−k=−∞[(
Φ(θ̂2(A−k), θ, σν)− Φ(θ̂1, θ, σν)

)
−(

Φ(θ̂2(A−k), θ + bk4σ
2
ν , σν)− Φ(θ̂1, θ + bk4σ

2
ν , σν)

)
× eak4+bk4θ+(bk4)2σ2

ν/2 ×

exp
(
a−k4 + b−k4 θ−k

) ]
φ(θ−k, θ, σν)dθ−kdθ =∫ θi+ε

θ=θi−ε
q(θ)

{∫ θ̂1

θ−k=− x
1−x[(

Φ(θ̂2(A−k), θ, σν)− Φ(θ̂1, θ, σν)
)
−(

Φ(θ̂2(A−k), θ + bk4σ
2
ν , σν)− Φ(θ̂1, θ + bk4σ

2
ν , σν)

)
× eak4+bk4θ+(bk4)2σ2

ν/2 ×

exp
(
a−k4 + b−k4 θ−k

) ]
φ(θ−k, θ, σν)dθ−k +

Φ(− x

1− x
, θ, σν)

[(
Φ(θ̂2(0), θ, σν)− Φ(θ̂1, θ, σν)

)
−

ea
k
4+bk4θ+(bk4)2σ2

ν/2 ×
(

Φ(θ̂2(0), θ + bk4σ
2
ν , σν)− Φ(θ̂1, θ + bk4σ

2
ν , σν)

)]}
dθ

C.3. Region 4c

Both banks are insolvent, but −k’s insolvency is due to k and not vice versa.

The condition for this is: Ak < D ∧ A−k +ψ(Ak +B) < D+B (mirror image

of region 3 for the second inequality). Since both banks are insolvent, period 2

consumption is the same as in region 4a:

c2(θ |θ ∈ Θ4c) =
Ak + ψA−k

(1 + ψ)(1−min[n, x/c])

so that −k’s integral has closed form as before in region 4a (with different

boundaries)

Φ(θ̂2(Ak), θ + b−k4 σ2
ν , σν)− Φ(θ̂1, θ + b−k4 σ2

ν , σν)

The component depending on k doesn’t have closed form because the boundaries
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of −k’s integral depend on k. We are left with

∆4c =

∫ θi+ε

θ=θi−ε
q(θ)

{∫ θ̂1

θk=− x
1−x[(

Φ(θ̂2(Ak), θ, σν)− Φ(θ̂1, θ, σν)
)
−

ea
−k
4 +b−k4 θ+(b−k4 )2σ2

ν/2 ×
(

Φ(θ̂2(Ak), θ + b−k4 σ2
ν , σν)− Φ(θ̂1, θ + b−k4 σ2

ν , σν)
)
×

exp
(
ak4 + bk4θk

)
φ(θk, θ, σν)dθk

]
+

Φ(− x

1− x
, θ, σν)

[(
Φ(θ̂2(0), θ, σν)− Φ(θ̂1, θ, σν)

)
−

ea
−k
4 +b−k4 θ+(b−k4 )2σ2

ν/2 ×
(

Φ(θ̂2(0), θ + b−k4 σ2
ν , σν)− Φ(θ̂1, θ + b−k4 σ2

ν , σν)
)]}

dθ
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D. Simulation: Graphs

Figure 8. Comparing Integration Methods: Expected Differential Utility a∆
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