
Integrating Factor Models∗

Doron Avramov† Si Cheng‡ Lior Metzker§ Stefan Voigt¶

This Version: November 23, 2021

Abstract

This paper develops a comprehensive framework to address uncertainty about

the correct factor model specification. Asset pricing inferences draw on a com-

posite model that integrates over competing factor models weighted by posterior

probabilities. The analyses show that models with time-invariant parameters record

near-zero probabilities, and post-earnings announcement drift, quality-minus-junk,

and intermediary capital factors are incremental to the market. From an invest-

ment perspective, augmenting the model disagreement about expected returns and

the probability weighted uncertainty about model parameters, a Bayesian agent

perceives equities as considerably riskier than sample estimates. In addition, the

integrated model delivers stable strategies, even during market downturns.
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1 Introduction

Financial economists have identified a plethora of firm characteristics that predict future

stock returns (e.g., Cochrane (2011) and Harvey et al. (2016)). The literature has further

proposed two major approaches to reduce the expanding dimension of cross-sectional

predictors. The first invokes economic rationales, e.g., plausible restrictions on the ad-

missible Sharpe ratio, the present value model, and the q-theory, to identify a small set of

common factors, while the second approach formulates the dependence of average returns

on common factors or firm characteristics through regression regularization techniques

including deep learning extensions. However, the collection of factors that matter the

most remains subject to research controversy.1 Significant uncertainty also extends to

the choice of macro variables that potentially govern time-varying investment opportu-

nities.2 Moreover, even if the econometrician has prior information about the identity of

asset pricing factors and macro predictors, there is still uncertainty about whether the

underlying model holds exactly or instead admits the possibility of mispricing.3

Somewhat surprisingly, a comprehensive analysis of Bayesian model uncertainty has

not been accounted for in formulating expected returns and second moments or in deriving

mean-variance efficient portfolios. When addressing model uncertainty, the researcher’s

core tasks are to identify a universe of competing factor models, assess the probabil-

ity that a candidate model generates the observed dynamics of asset returns, and then

1See, e.g., Ross (1976), Fama and French (2015), and Hou et al. (2015) for the first approach, and
Green et al. (2017a), Light et al. (2017), Manresa et al. (2017), Messmer and Audrino (2017), Feng et al.
(2020), Freyberger et al. (2020), Gu et al. (2020), Kozak et al. (2020), Chen et al. (2021), and Cong
et al. (2021) for the second. Notably, the various specifications could disagree on the set of factors that
matter the most.

2Cochrane (2011) argues that by virtue of the present value model, the price-to-dividend ratio must
predict future returns. However, as the present value is based on unobserved expectations, the true set
of predictors, beyond the price-to-dividend ratio, is unknown.

3Resorting to Instrumented Principal Component Analysis (IPCA), Kelly et al. (2019) extract com-
mon factors both including and excluding mispricing. Employing time-series asset pricing regressions,
Ferson and Harvey (1999) and Avramov (2004) show that mispricing, with respect to the Fama-French
3-factor model, varies with macro variables; the former study focuses on statistical significance, while
the latter analyzes investment performance.
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integrate over the vast model universe using model posterior probabilities as weights.

This approach, termed Bayesian model averaging (BMA), formulates a composite model

that summarizes the uncertainties about the joint dynamics of stock returns.4 Inferences

about mean returns, the covariance matrix, and possibly even higher moments are made

based on that integrated model. Hence, the analysis of the cross section is conditioned

on the whole information set instead of relying only on information contained in a single

model. In that way, the Bayesian approach could temper the data snooping concerns

identified in the literature (e.g., Harvey et al. (2016), Harvey (2017), Hou et al. (2020)).

This paper develops and applies a Bayesian framework to study average returns and

the covariance matrix in the presence of model uncertainty. Candidate models differ with

respect to the collection of cross-sectional factors, the set of macro predictors, and the

factor model specifications, which either hold exactly or admit various degrees of mis-

pricing. A key challenge in the analysis is the formulation of model posterior probability,

or the probability that a candidate model generates the joint dynamics of returns. In

particular, it is essential to motivate economically interpretable priors for all parameters

underlying the factor model and the time-series evolution of factor risk premia.

Pástor and Stambaugh (1999), and a large body of work, propose economic priors

on model mispricing in an unconditional setup. Instead, we suggest economically inter-

pretable priors on the entire parameter space for models with fixed and time-varying pa-

rameters. Prior beliefs are weighted against predictability by macro variables and model

mispricing. The posterior probability employs sound economic appeals and penalizes

model complexity to the extent that an incremental factor or macro predictor is retained

in the pricing model specification only if it considerably improves pricing abilities.

In the presence of model uncertainty, expected returns are a mixture of model-implied

expected returns, where mixture stands for value weighting using model posterior prob-

4Avramov (2002) implements model averaging in the context of predictive regressions.
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abilities as weights. The covariance matrix consists of three components. The first is a

mixture of model-implied covariance, assuming the model parameters are known. The

other two components evolve from uncertainty about the correct factor model and its

underlying parameters. The first of the two components is a mixture of estimation risk,

namely, the risk that underlying model parameters are estimated with errors. The second

summarizes model disagreement. Intuitively, a stock appears riskier when there is greater

disagreement among candidate models about its expected return. Similar to the Ridge re-

gression approach, the disagreement component could make an otherwise ill-conditioned

covariance matrix of stock returns readily invertible. Through BMA, the predictive dis-

tribution of future returns integrates out the within-model parameter space (parameter

uncertainty) as well as the model space (model disagreement). Thus, the Bayesian effi-

cient portfolios do not depend on a particular model or underlying parameters.

We apply the framework to sample data that consist of 14 asset pricing factors and 13

macro predictors from 1977 to 2016. The model universe exceeds 52 million specifications

that differ in the inclusion of cross-sectional factors, macro predictors, and the presence of

mispricing. We start by examining some stylized model features. First, for a reasonable

prior Sharpe ratio, the 10 (100, 500) top-ranked individual models account for a cumu-

lative posterior probability of 30% (76%, 93%), suggesting that there is no clear winner

across the whole space of candidate models.5 Instead, a plethora of distinct models record

a positive and meaningful probability of governing the joint distribution of stock returns.

While model selection would narrow down the focus to a single factor model, or a few

ones, the Bayesian approach integrates the dynamics of nonzero probability models.

Second, even when prior beliefs are weighted against time-varying moments, our pro-

cedure uniformly favors conditional models and indicates that both factor loadings and

5In our baseline case, the prior Sharpe ratio for the tangency portfolio is set to be 50% higher than
the market Sharpe ratio. The top-ranked models describe factor models that record the highest posterior
probabilities based on the Bayesian procedure.
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risk premiums vary with macroeconomic conditions.6 Remarkably, in the presence of con-

ditional factor models, the cumulative probability of unconditional models is near zero.

Likewise, while prior beliefs are weighted against model mispricing, the composite model

shows that time-varying mispricing appears with a probability that ranges between 58%

and 69%. Hence, zero-alpha models selected from the collection of factors and macro

predictors may not adequately explain cross-sectional and time-series effects in returns.

Analyzing the strength of factors in the integrated model, several findings are worth

noting. First, for a reasonable prior Sharpe ratio, the post-earnings announcement drift

(PEAD, from Daniel et al. (2020)) and quality-minus-junk (QMJ, from Asness et al.

(2019)) display a posterior inclusion probability of close to 100%, followed by investment

(CMA, from Fama and French (2015)), size (SMB, from Fama and French (1993)), inter-

mediary capital (ICR, from He et al. (2017)), and management (MGMT, from Stambaugh

and Yuan (2017))—which all offer a posterior inclusion probability of at least 90%, high-

lighting their promise in pricing other factors. Our findings also suggest that despite the

expanding factor zoo, several new factors proposed after 2015, including both fundamen-

tal and behavioral factors, are incrementally competent in pricing the existing factors.

Second, while PEAD, QMJ, and ICR stand out across different prior specifications,

the inclusion probabilities for SMB, CMA, and MGMT diminish for a high prior Sharpe

ratio. In contrast, betting-against-beta (BAB, Frazzini and Pedersen (2014)) exhibits

high inclusion probability only when the prior is tilted toward a high Sharpe ratio. Thus,

the pricing abilities of widely explored factors depend on one’s views about how large the

Sharpe ratio could be. Bounding the prior Sharpe ratio to sensible values reinforces one

group of factors (e.g., SMB, CMA, and MGMT) while challenging others (e.g., BAB).

Likewise, bounding the Sharpe ratio has implications for the inclusion of macro predic-

6In separate tests based on multivariate predictive regressions, the specifications that include nonlin-
earities and interactions between macro predictors uniformly dominate linear specifications. This further
supports the notion that both factor loadings and risk premiums vary with economic conditions.
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tors. For instance, the net equity expansion and the Treasury Bill yield appear with

almost zero probability for sensible values of prior Sharpe ratios. However, when prior

Sharpe ratios get considerably higher, both the macro items record 90% probability of

inclusion. This evidence reflects the notion that strong in-sample evidence on time-series

predictability need not extend out-of-sample. Imposing bounds on the Sharpe ratio is

advocated in prior work. For instance, Kozak et al. (2018) point out that in the pres-

ence of sentiment investors who cannot take extreme positions and a small number of

arbitrageurs, extremely high Sharpe ratio investment strategies are unlikely to prevail.

Third, our results support a model with time-varying parameters and with five to

seven factors recording high inclusion probabilities. The prominent factors originate

from distinct economic foundations rather than an established well-known model. For

instance, PEAD, QMJ, and ICR are proposed by three independent works, and this

combined specification has not been examined in the previous literature.

We next assess the out-of-sample performance of the composite model through tan-

gency portfolios that are based on a predictive distribution that integrates out the model

space and the within-model parameter space. We first compute the Sharpe ratio and

downside risk for the tangency portfolio. For comparison, we consider four benchmark

models that are widely used by academics and practitioners, i.e., the CAPM, the Fama-

French 3-factor model (Fama and French (1993)), the Fama-French 6-factor model (Fama

and French (2018)), and the AQR 6-factor model (Frazzini et al. (2018)). We further con-

sider the three top-ranked individual models, namely, the three highest posterior proba-

bility models based on the Bayesian procedure.

The integrated model outperforms the benchmark models out of sample. For instance,

the integrated model generates an annualized Sharpe ratio of 1.240, indicating a 8%

improvement from the best benchmark model. To ensure that the tangency portfolio relies

on admissible long and short positions, we further impose the Regulation T constraint
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on stock holdings.7 Then, the integrated model produces an out-of-sample annualized

Sharpe ratio of 0.979 and outperforms the best benchmark model by 25%.

The Bayesian approach also mitigates the downside risk. Relative to benchmark mod-

els, the tangency portfolio based on the integrated model exhibits less negative skewness,

lower excess kurtosis, and lower maximum drawdown, to the extent that there are only

modest declines in the portfolio value when the overall market drops significantly. In

addition, while the top-ranked individual models display similar posterior probabilities,

we observe more variations in their performance and relative strength. Therefore, model

selection based on a few top-ranked models could provide an unstable description of asset

return dynamics, while model integration improves the stability of forecasts.

It is also imperative to assess the performance of the global minimum variance port-

folio (GMVP), which only relies on the covariance matrix of returns. In particular, the

covariance matrix accounts for model uncertainty through a mixture of estimation risk

components and the model disagreement about expected returns. Thus, if model un-

certainty has meaningful asset pricing implications, the GMVP based on the integrated

model should generate investment payoffs characterized by relatively low risk measures.

Indeed, the integrated model based GMVP generates improved measures of realized

volatility and maximum drawdown. For instance, monthly realized volatility for GMVPs

based on the benchmark models ranges between 0.956% and 2.127%, while appears to

be only 0.756% for the integrated model, indicating a 21% to 64% volatility reduction.

In addition, the maximum drawdown (throughout the entire sample) for the benchmark

models ranges between 6% and 27%, compared to 5% for the integrated model. Because

expected returns across the specifications are not materially different, the lower volatility

7The Federal Reserve Board Regulation T mandates maximum two-to-one leverage (e.g., Jacobs
et al. (1999)). See the Financial Industry Regulatory Authority (FINRA) website for details: https://
www.finra.org/rules-guidance/key-topics/margin-accounts. Formally, accounting for Regulation
T, the sum of the absolute values of long and short positions is constrained to be smaller than 2, where
2 is obtained by dividing 1 by the initial margin of 50%.
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characterizing the Bayesian approach translates into higher out-of-sample Sharpe ratio.

Specifically, the integrated model based GMVP generates an annualized Sharpe ratio of

1.101 and outperforms the best benchmark model by 35%. The results highlight the

sizable impact of model uncertainty on the covariance matrix of stock returns.

Finally, we conduct two experiments to further highlight the implications of model

uncertainty for the investment opportunity set. First, we compare the sample variance of

factor returns with the sample average of the perceived variance based on the integrated

model. Excluding model uncertainty, the sample variance should exceed the time-series

average of the conditional variance, as the latter utilizes information from macro vari-

ables. With model uncertainty accounted for, however, there are two conflicting forces

underlying the variance comparison. Empirically, we show that most of the factors display

remarkably higher variance through the lens of the integrated model. For perspective,

the integrated model variance is, on average, 53% higher than the sample variance across

all 14 factors. The findings suggest that the mixture of estimation risk and the model

disagreement components jointly have a sizable impact on the ex ante risk of equities. In

other words, a Bayesian agent who accounts for model uncertainty perceives equities to

be considerably riskier than what would be implied by the sample volatility.

Second, we examine the time variation in model disagreement about expected returns.

Following the literature on information theory, we use the entropy increase to measure

the contribution of model uncertainty to the covariance matrix. While on average, the

increase in entropy is modest, it spikes dramatically during major market downturns,

e.g., Black Monday in October 1987 and the recent financial crisis starting in Septem-

ber 2008. Compared to a benchmark value of 1, indicating no entropy increase, the full

sample average is 1.010 but increases to 1.069 at the 99th percentile and reaches a max-

imum of 1.379. In addition, we estimate the contribution of every single factor to the

overall entropy increase. Interestingly, the time-varying model uncertainty component is
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primarily driven by the market, MGMT, and ICR factors, and all three factors uniformly

have a maximum contribution of at least 10% to the total entropy increase in the full

sample and various subperiods. In sum, asset pricing models significantly disagree about

expected stock returns during crash events in the financial market. Taking this finding

along with the stable performance of the integrated model based efficient portfolios, we

argue that accounting for model uncertainty effectively hedges against market crashes.

Taken together, the proposed Bayesian approach delivers stable and superior strate-

gies. It further mitigates the downside risk and volatility of efficient portfolios. Our

findings are robust to imposing economic restrictions on the admissible Sharpe ratios and

on long and short stock positions. Notably, model uncertainty makes equities appear

considerably riskier, while model disagreement about expected stock return especially

spikes around market downturns.

To our knowledge, Avramov and Chao (2006) is the first work to formally compare

asset pricing models, both nested and nonnested, through the metric of posterior prob-

abilities. Follow-up studies include Anderson and Cheng (2016), Stambaugh and Yuan

(2017), Barillas and Shanken (2018), Chib and Zeng (2019), Chib et al. (2019), Bryz-

galova et al. (2020), and Chib et al. (2020). Our study differs from these in four major

ways. First, related work on model comparison and factor selection is based on rankings

of posterior probabilities, while we propose a novel model combination approach that

integrates over the space of candidate models.8 Second, existing studies typically focus

on unconditional factor models, while we consider time-varying mispricing, factor load-

ings, and risk premia and provide supportive evidence for nonlinear dependence between

expected returns and macro items. Third, prior beliefs about the entire parameter space

8In an independent work, Bryzgalova et al. (2020) develop a Bayesian estimator for linear stochastic
discount factors (SDFs) and implement model averaging. We differ from their setup by (i) consider-
ing beta pricing specifications, (ii) proposing economically interpretable priors for the entire parameter
space, (iii) implementing mean-variance portfolios based on the weighted model, (iv) studying the im-
plications of model uncertainty for the riskiness of equities, and (v) dissecting time-series variation in
model disagreement about expected returns.
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are economically interpretable in our setup, while training samples are often considered

to formulate statistically informed priors. Finally, examining the implications of the

integrated model for the covariance matrix of returns is novel.

The remainder of the paper proceeds as follows. Section 2 derives a general method-

ology for analyzing asset pricing with model uncertainty. Section 3 derives the posterior

probabilities for predictive regressions and factor models. Section 4 describes the data.

Section 5 presents a probability analysis of factor models as well as the inclusion of in-

dividual factors and predictors. Section 6 assesses the out-of-sample performance of the

integrated model through both tangency portfolios and GMVPs. Section 7 presents ev-

idence on the riskiness of equities in the presence of model uncertainty and dissects the

time-series variation in the implications of model disagreement about expected returns.

Section 8 concludes the paper.

2 Asset Pricing with Model Uncertainty

This section develops an analytical framework for studying asset pricing in the presence

of model uncertainty. A key challenge in the analysis is computing model probabilities,

or the probability that a candidate factor model generates the joint dynamics of asset

returns. To pursue that task, it is essential to formulate economically meaningful prior

beliefs for the entire set of parameters underlying the factor model. This point merits

further discussion. In a general context, combining an improper prior with a likelihood

function yields a posterior distribution that is well defined and interpretable. In comput-

ing posterior probabilities, however, the prior density must be fully specified and avoid

undefined constants characterizing a flat prior.9

In financial economics, a large body of work motivates economically meaningful pri-

ors, but on a subset of the parameter space. For instance, Pástor and Stambaugh (1999),

9See, e.g., the discussions in Kass and Raftery (1995) and Poirier (1995).
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Pástor (2000), and Pástor and Stambaugh (2000) account for prior information about

mispricing, or alpha, which translates into a certain degree of belief in model pricing abil-

ities. Kozak et al. (2020) impose an economically motivated prior on stochastic discount

factor (SDF) coefficients. They introduce a novel prior for mispricing that applies when

factors are ordered eigenvectors. In this paper, we propose economically interpretable

priors for the entire parameter space underlying beta pricing specifications when factors

are prespecified. Moreover, we account for the possibility that model mispricing, factor

loadings, and risk premiums (all or subsets) vary with business conditions.

To set the stage, let rt denote an N -vector of excess returns on test assets, let ft denote

a K-vector of factors that are return spreads, and let zt denote an M -vector of macro

variables that are potentially related to the distribution of future returns. The length of

a time series is denoted by T and the time t subscript represents time t realizations.

Excess returns are modeled through the time-series asset pricing regression

rt+1 =α(zt) + β(zt)ft+1 + ur,t+1, (1)

while factors are formulated using the time-series predictive regression

ft+1 =αf + aF zt + uf,t+1. (2)

The residuals [u′r,t+1, u
′
f,t+1]′ are orthogonal innovations assumed to obey the normal dis-

tribution: ur,t+1 ∼ N (0,ΣRR) and uf,t+1 ∼ N (0,ΣFF ). The intercept α(zt) and slope

β(zt) coefficients are modeled as α(zt) = α0 + α1zt and β(zt) = β0 + β1 (IK ⊗ zt), where

⊗ denotes the Kronecker product, and IK is the identity matrix of size K. Then, excess

stock returns can be re-expressed as

rt+1 =α0 + α1zt + β0ft+1 + β1 (IK ⊗ zt) ft+1 + ur,t+1. (3)
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The intercepts α0 and α1 are an N -vector and an N ×M matrix reflecting fixed and

time-varying model mispricing, respectively. When the factors are portfolio spreads, an

asset pricing model implies that both alpha components are equal to zero. When only

α0 6= 0, then time-invariant model mispricing is present, while when α1 6= 0, model

mispricing varies with macro conditions. Next, β(zt) is an N ×K matrix of potentially

time-varying factor sensitivities, where β0 is an N ×K matrix and β1 is an N × (KM)

matrix. Factor loadings are time varying if β1 6= 0. The formulation in equation (2)

recognizes the possibility that risk premiums are also time varying (aF 6= 0).

The asset pricing specification in equations (2) and (3) gives rise to multiple sources of

uncertainty characterizing stock return dynamics. We start with mispricing uncertainty.

In particular, does a prespecified factor model really explain the cross-sectional variation

in average stock returns? Pástor and Stambaugh (1999) show that uncertainty about

model pricing abilities could be substantial. Moreover, Gibbons et al. (1989), among

others, derive classical asset pricing statistics to test zero-alpha restrictions (see Campbell

et al. (1997) and Cochrane (2009) for a comprehensive coverage), while Harvey and Zhou

(1990), McCulloch and Rossi (1991), Kandel and Stambaugh (1995), and Avramov and

Chao (2006) develop Bayesian asset pricing tests.

Second, there is substantial uncertainty about the identity of asset pricing factors. Re-

markably, Harvey et al. (2016) count 316 factors and Hou et al. (2020) cover 452 anoma-

lies. To address the expanding dimension of the cross section, two major approaches have

been proposed. The first identifies a small number of factors based on sound economic

appeals. For instance, motivated by the dividend discount valuation model, Fama and

French (2015) propose a five-factor model that augments the original market, size, and

value factors with investment and profitability factors. Hou et al. (2015) and Hou et al.

(2021) propose q-factor models that draw on the q-theory of investment. Stambaugh and

Yuan (2017) advocate two mispricing factors based on 11 anomalies studied in Stam-
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baugh et al. (2012). The second approach proposes shrinkage methods such as Lasso,

Ridge, and their extensions (e.g., Green et al. (2017b), DeMiguel et al. (2020), Feng et al.

(2020), Freyberger et al. (2020), and Kozak et al. (2020)). Shrinkage methods employ a

trade-off by reducing the variance of estimated parameters at the cost of introducing a

bias. Nevertheless, the true set of asset pricing factors is subject to research controversy.

The third type of uncertainty concerns the identity of macro variables that forecast

changing investment opportunities. Past work has addressed this uncertainty through

the predictive regression setup. In particular, when M macro variables are suspected to

be relevant in predicting future returns, there are altogether 2M competing predictive

regressions. In classical econometrics, model selection criteria are typically employed to

select among competing models. At the heart of model selection, one applies a specific

criterion (e.g., Bayesian information criterion) to select a single model and then operates

as if the model is correct with a unit probability. Using various model selection criteria,

Bossaerts and Hillion (1999) and Welch and Goyal (2008) detect no out-of-sample return

predictability even when the in-sample evidence is solid.

Counter to the classical approach, BMA is a comprehensive method that directly

follows from the Bayes rule and is justified from a decision-making perspective. The

Bayesian method assigns posterior probabilities to each of the 2M competing specifications

and then uses the probabilities as weights on the individual models to obtain a composite

weighted model. BMA displays robust out-of-sample predictive power relative to the

model selection criteria (e.g., Avramov (2002)).

In this paper, we propose a novel Bayesian approach to study time-series and cross-

sectional effects in asset returns, when the true factor model and its underlying parameters

are uncertain. We first consider a universe of candidate asset pricing factors and macro

predictors, and then compute the posterior probability for each candidate model. Models

differ with respect to the three sources of uncertainty described earlier. Panel A of Table

12



1 lists the candidate models considered in the paper. The symbols M1 and M2 represent

the family of unconditional models without mispricing (M1) and with fixed mispricing

(M2), while M3 and M4 represent the family of conditional models with time-varying

factor loadings and risk premiums. In particular, M3 excludes mispricing, while M4

allows for both fixed and time-varying mispricing. Within these families, models differ

in their inclusion of asset pricing factors (M1 and M2) or their inclusion of both factors

and predictors (M3 and M4).

In the presence of model uncertainty, expected stock returns are formulated as

E [rt+1|D] =
L∑
l=1

P (Ml|D)E [rt+1|Ml, D] , (4)

where D stands for the observed data consisting of a balanced panel of N test assets,

K factors, and M macro predictors through T periods, l is a model-specific subscript,

Ml represents a candidate factor model, P (Ml|D) is the model posterior probability,

E [rt+1|Ml, D] is the model-specific expected return, and L is the total number of candi-

date models.

The covariance matrix of stock returns can be decomposed into two components as

Var [rt+1|D] = Vt + Ωt, (5)

where Vt =
L∑
l=1

P (Ml|D) Var [rt+1|Ml, D] is the weighted average of model-implied co-

variance (denoted Var [rt+1|Ml, D]), using posterior probabilities as weights. The model-

implied covariance possibly varies over time with the factor loadings.

The Vt component can further be decomposed into two items. The first value weights

(using posterior probabilities) the usual covariance matrices, similar to the classical ap-

proach but relying on posterior means rather than maximum likelihood estimates. The

second value weights (again, using posterior probabilities) the estimation risk compo-
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nent. Estimation risk comes into play because the parameters in a Bayesian setting are

stochastic.

In addition, Ωt is given by

Ωt = Var (E [rt+1|Ml, D])

=
L∑
l=1

P (Ml|D) (E [rt+1|Ml, D]− E [rt+1|D]) (E [rt+1|Ml, D]− E [rt+1|D])′ . (6)

The Ωt component summarizes the disagreement among candidate models about ex-

pected stock returns. The incremental variation is larger for an asset when candidate

models disagree more about its expected returns. When restricting Ωt to be diago-

nal, the matrix Var [rt+1|D] can be readily invertible even when Vt is singular or ill-

conditioned.10 Thus, the addition of Ωt resembles the Ridge regression penalty, but there

are important differences. In Ridge regressions, the variance of returns takes the form

Var [rt+1|M, D] = Ṽt + γIN , where Ṽt is a frequentist-based estimate of the covariance

matrix of returns, in which each of its elements is smaller (in absolute values) than

the Bayesian counterpart due to estimation risk, and γ corresponds to a homogeneous

shrinkage intensity toward the identity matrix of order N , the number of test assets.11

The covariance matrix decomposition in equation (5) has a close resemblance to the

shrinkage methods proposed by Ledoit and Wolf (2003, 2004), which have been shown

to improve volatility forecasting in high-dimensional setups. However, Ledoit and Wolf

(2003, 2004) propose shrinkage toward a parsimonious target, whereas the posterior pre-

dictive variance imposes asset-specific shrinkage toward the grand mean, Vt, in proportion

to the general agreement among candidate models about mean returns.

Taken together, the integrated model is associated with a three-component covariance

10In the empirical analyses, we keep Ωt general enough to enable covariances due to cross-model
disagreements.

11While the Ridge shrinkage has a single tuning parameter, it assigns more prominence to components
with higher eigenvalues.
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matrix, including (i) a mixture of model-implied covariance matrices assuming model

parameters are known, (ii) a mixture of estimation risk, and (iii) the model disagreement

about expected returns. As noted in the introduction, mixture stands for value weighting

using posterior probabilities as weights.

Note that while BMA follows directly from the Bayes rule, as noted earlier, there

are other approaches for model combination. Examples include decision-based model

combinations per Billio et al. (2013) and optimal prediction pooling per Geweke and

Amisano (2011).12 BMA would, ex ante, be optimal under several loss functions, including

the log loss and the squared error loss (Hoeting et al. (1999)).

3 Deriving Posterior Probabilities

3.1 General Formulation

Let θ denote the parameter space that is unique for every candidate model. The parameter

space consists of the intercept and slope coefficients in equations (2) and (3) as well as

the covariance matrices. Combining the prior density on the parameters, π(θ|Ml), and

the likelihood based on observing data, L(D|θ,Ml), yields the posterior distribution,

π(θ|D,Ml). The posterior reflects the distribution of unknown parameters θ given (i)

prior views, (ii) the observed data D, and (iii) the particular factor model Ml.

An intermediate input in computing the model posterior probability is the model

marginal likelihood, denoted by m(D|Ml). Following Chib (1995), the marginal likeli-

12Neither approach shows promise when applied to our setting. First, we have examined utility-based
combination weights as a function of the realized certainty equivalent or the Sharpe ratio as a suitable
objective for a mean-variance investor. The resulting combination weights concentrate all mass on a single
underperforming model. Second, the implementation of optimal prediction pools in the spirit of Geweke
and Amisano (2011) requires sampling from posterior predictive distribution for each model to evaluate
log predictive scores. In our vast model universe, such a procedure is computationally infeasible even
with supercomputing capacities at work. Narrowing the focus to a manageable universe of unconditional
models leads to weak performance.
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hood is computed (dropping the model-specific subscript to ease notation) as

m(D|M) =

∫
θ

L(D|θ,M)π(θ|M)dθ

=
L(D|θ,M)π(θ|M)

π(θ|D,M)
. (7)

The marginal likelihood in equation (7) does not depend on θ, as it integrates out the

entire parameter space. By doing so, the marginal likelihood provides a consistent form

to adjust for model complexity and thus guards against overfitting.

Then, the posterior probability of model M is given by

P (M|D) =
m (D|M)P (M)∑L
l=1m (D|Ml)P (Ml)

, (8)

where P (Ml) is the prior probability that model Ml is correct. In the absence of a

compelling reason to favor, ex ante, one model over another, we choose flat prior model

probabilities.13

Given the general formulation, we next attempt to compute marginal likelihoods for

competing models. Our informative prior distribution is based on a hypothetical sample

of length T0.14 In that sample, the means and variances of stock returns, factors, and

predictors are set equal to the actual sample counterparts given by

r̄ =
1

T

T∑
t=1

rt V̂r =
1

T

T∑
t=1

(rt − r̄)(rt − r̄)′

f̄ =
1

T

T∑
t=1

ft V̂f =
1

T

T∑
t=1

(ft − f̄)(ft − f̄)′

13Notably, for a Bayesian agent who has a stronger prior tilt towards particular models or individual
factors or predictors, our framework can be adjusted to accommodate an unequal prior allocation.

14Our prior specification draws on Kandel and Stambaugh (1996), Pástor and Stambaugh (1999, 2000,
2002a,b), Avramov (2004), and Avramov and Wermers (2006).
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z̄ =
1

T

T−1∑
t=0

zt V̂z =
1

T

T−1∑
t=0

(zt − z̄)(zt − z̄)′

ȳ =
1

T

T∑
t=1

yt V̂y =
1

T

T∑
t=1

(yt − ȳ)(yt − ȳ)′, (9)

where yt = [r′t, f
′
t ]
′. The hypothetical sample is also weighted against predictability by

macro items and against model mispricing, while its size, T0, is yet to be formulated. We

develop the informed prior below.

Using statistics from the actual sample to specify some of the parameters of the prior

distribution is commonly termed “empirical Bayes” (Robbins (1956, 1964)). Note, at

this early point, that all our empirical out-of-sample experiments are conducted based on

real-time information.

3.2 Posterior Probabilities for Predictive Regressions

To reinforce the case for time-varying parameters, we briefly depart from factor models

and consider instead multivariate predictive regressions. The analysis of predictive re-

gressions is motivated by taking expectations from both sides of equation (3) conditional

on zt and the underlying model parameters, as well as using the factor generating process

in equation (2). In particular, expected returns are given by

E [rt+1|zt, θ] =
(
α0 + β0αf

)
+
(
α1 + β0aF + β1 (αf ⊗ IM)

)
zt + β1 (aF ⊗ IM) (zt ⊗ zt) .

(10)

Thus, when both factor loadings and risk premiums are time varying, expected stock

returns depend on macro predictors through their levels, squared values, and interactions.

Hence, a general formulation for predictive regressions should allow for nonlinear

relations between future returns and predictors. To illustrate, focusing on the model that
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retains all M macro predictors, the predictive regression is formulated as

yt+1 =B0 +B1zt +B2vech (ztz
′
t) + εt+1, (11)

where the operator vech(ztz
′
t) vectorizes the entries below and on the main diagonal of

the matrix ztz
′
t and is a 1

2
(M + 1)×M vector that contains all interaction terms of the

predictive variables, B = [B0, B1, B2] is a (N +K) ×
(
1 + 1

2
M(M + 3)

)
matrix of the

regression intercept and slope coefficients, and εt+1 is assumed to obey εt+1 ∼ N (0,Σ).

The set of retained predictors is unique for every predictive regression. A candidate

set of predictors is defined through a vector of binary variables of length M , indicating

the inclusion or exclusion of a variable. The number of retained predictors is denoted by

m, and it ranges between zero and M . In one extreme case, all predictors are excluded.

Then, returns are independently and identically distributed (IID). The polar extreme is

the all-inclusive specification that retains all M predictors.

We compute the marginal likelihoods for the collection of predictive regressions on the

basis of three scenarios. The first excludes nonlinearities by setting B2 = 0. The second

allows for squared values and interactions. The third is a combination of the first two

scenarios. We provide more details in the empirical section that follows. We can then

assess the inclusion probability for both individual predictors and nonlinearities.

It is convenient to reformulate the data generating process in equation (11) using

matrix notation

Y =XB + U, (12)

where X = [x0, x1, . . . , xT−1]′, Y = [y1, y2, . . . , yT ]′, U = [ε1, . . . , εT ]′, and xt = [1, z′t]
′ if

interaction terms are omitted or xt = [1, z′t, vech(ztz
′
t)
′]′ if interaction terms are included.

The marginal likelihood computation for the predictive regression is based on observ-
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ing a hypothetical sample of length T0 that is weighted against predictability. In that

sample, the slope coefficients in the predictive regressions are centered around zero. The

size of the hypothetical prior is set as a fixed number, i.e., 50, multiplied by the number

of parameters underlying each of the predictive models, following Kandel and Stambaugh

(1996).

We show in the Online Appendix A that the log marginal likelihood of any predictive

regression is given by

ln [m(D|M)] = −T (N +K)

2
ln(π) +

T0 −m− 1

2
ln |T0V̂y| −

T ∗ −m− 1

2
ln |S̃|

−
N+K∑
i=1

ln

{
Γ

(
T0 −m− i

2

)}
+

N+K∑
i=1

ln

{
Γ

(
T ∗ −m− i

2

)}
− (N +K)(m+ 1)

2
ln

(
T ∗

T0

)
, (13)

where

S̃ =T ∗
(
V̂y + ȳȳ′

)
− T

T ∗
(T0ȳx̄

′ + Y ′X) (X ′X)−1 (T0x̄ȳ
′ +X ′Y ) , (14)

and where m is the number of retained predictors, x̄ = 1
T

∑T
t=1 xt, T

∗ = T + T0, Γ(φ)

stands for the Gamma function evaluated at φ, and |A| is the determinant of matrix A.

For the IID model, it follows that S̃iid = T ∗V̂y, where V̂y is defined in equation (9).

We make two final notes for this subsection. First, the X matrix above is unique for

every model, but we drop the model-specific subscript to ease notation. Second, while

T0 follows quite straightforwardly in a predictive regression setting, its formulation in an

asset pricing context is more challenging. We provide details later in the text.
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3.3 Posterior Probabilities for Factor Models

Returning to factor models, similar to Avramov and Chao (2006) and Barillas and

Shanken (2018), all candidate models contain the market factor.15 As noted earlier,

the prior is based on a hypothetical sample of length T0 with moments that are equal

to the actual sample counterparts. In addition, the prior is weighted against both pre-

dictability by macro variables and model misspecification. Thus, on the basis of equation

(3), regressing rt on a constant term, zt−1, ft, and the interactions of ft⊗ zt−1 yields zero

estimates for α0, α1, and β1 in the prior sample. In other words, the prior densities of

α0, α1, and β1 are centered around zero.

We derive the marginal likelihood conditional on knowing T0 and then provide an

approach for computing T0. In deriving the marginal likelihood, we adjust the collection

of test assets for every individual model based on the included factors. Specifically, K

denotes the maximal number of factors. When a candidate model Ml contains k ≤ K

factors, the other K−k “redundant” factors are included in the test assets in addition to

the N base assets. This is reasonable because a parsimonious model is only helpful if it

prices the remaining assets correctly, including both test assets and traded factors. This

specification also ensures that the marginal likelihoods for all models are conditioned on

the same set of data.

Marginal likelihoods are first derived for models with time-varying parameters. Online

Appendices B.1 and B.2 focus on unrestricted and restricted models, respectively. For the

unrestricted case, the marginal likelihood is given by (again, we drop the model subscript

15Multifactor extensions have been inspired by Merton (1973) and Ross (1976). ICAPM factors should
be correlated with the marginal utility of investors, while APT factors are extracted from the covariance
matrix of asset returns. In the ICAPM, the market factor typically appears along with other state
variables. In the APT, the first extracted factor typically has an almost unit correlation with the market
portfolio (e.g., Geweke and Zhou (1996)).
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to ease notation)

m(D|MC) = π−
1
2
T (N+K) ×

[
T0

T ∗

] 1
2

(N+K−k)(T0+k)+ 1
2
k(m+1)

×
[
T

T ∗

] 1
2

(N+K−k)T

×[
ΓN+K−k

(
1
2

[T ∗ − (k + 1)m− 1]
)

ΓN+K−k
(

1
2

[T0 − (k + 1)m− 1]
) ] [Γk

(
1
2

[T ∗ +N +K − k −m− 1]
)

Γk
(

1
2

[T0 +N +K − k −m− 1]
) ]×[

|R′R−R′F (F ′F )−1 F ′R| 12 (T0−(k+1)m−1)

|R′R− Φ̃′W ′W Φ̃| 12 (T ∗−(k+1)m−1)

][
|T0V̂f |

1
2

(T0+N+K−k−m−1)

|SF |
1
2

(T ∗+N+K−k−m−1)

]
, (15)

where MC stands for family of conditional models, T ∗ = T + T0, SF = T ∗
(
V̂f + f̄ f̄ ′

)
−

T
T ∗

(
T0[f̄ , f̄ z̄′] + F ′X

)
(X ′X)−1 (T0[f̄ , f̄ z̄′]′ +X ′F

)
, V̂y, f̄ , and z̄ are defined in equation

(9), W = [X,F,Ξ], and Ξ is the time-series collection of the vectorized matrix (IK ⊗ zt) ft+1

for all T periods. The last two terms in the marginal likelihood reflect the cross-sectional

fit, while the remaining terms emerge from model complexity. As more factors or predic-

tors are included, the model pricing abilities could improve. The potential improvement

is associated with increasing complexity. Thus, the ultimate inclusion of a variable is

subject to a rigorous trade-off.

The Online Appendix C derives the marginal likelihood for the case where uncon-

ditional models admit the possibility of mispricing (Online Appendix C.1) and when

mispricing is excluded (Online Appendix C.2). The marginal likelihood for unconditional

asset pricing models with mispricing is given by

m(D|MU) = π−
1
2
T (N+K) ×

[
T0

T ∗

] 1
2

(N+K−k)(T0+k)+ 1
2
k

×
[
T

T ∗

] 1
2

(N+K−k)T

×[
ΓN+K−k

(
1
2

[T ∗ − 1]
)

ΓN+K−k
(

1
2

[T0 − 1]
) ] [Γk

(
1
2

[T ∗ +N +K − k − 1]
)

Γk
(

1
2

[T0 +N +K − k − 1]
) ]×[

|R′R−R′F (F ′F )−1 F ′R| 12 (T0−1)

|R′R− Φ̃′W ′W Φ̃| 12 (T ∗−1)

][
|T0V̂f |

1
2

(T0+N+K−k−1)

|T ∗V̂f |
1
2

(T ∗+N+K−k−1)

]
, (16)

where MU stands for family of unconditional models.
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Online Appendix D summarizes the marginal likelihoods for all the families of models.

Notably, the marginal likelihood in the conditional case is invariant to a linear transfor-

mation of zt in equation (3). The Online Appendix E provides a detailed proof.

3.4 Setting T0

To complete the marginal likelihood derivation, it is essential to set T0. To pursue that

task, we link the variance of mispricing with the maximum admissible Sharpe ratio. First,

as formulated in the Online Appendix F, the intercepts α0 and α1 in equation (3) have

the joint prior distribution

vec ([α0, α1]′) |ΣRR, D ∼ N (0,ΣRR ⊗B11) , (17)

where B11 is a (1 +m)× (1 +m) matrix, given by

B11 =

1 + z̄′V̂ −1
z z̄ + f̄ ′V̂ −1

f f̄ + z̄′V̂ −1
z z̄ × f̄ ′V̂ −1

f f̄ −z̄′V̂ −1
z × (1 + f̄ ′V̂ −1

f f̄)

−V̂ −1
z z̄ × (1 + f̄ ′V̂ −1

f f̄) V̂ −1
z × (1 + f̄ ′V̂ −1

f f̄)

 . (18)

The unconditional variance of total mispricing is then equal to

Var (α|ΣRR, D) = Var (α0 + α′1z|ΣRR, D) =
ΣRR

T0

(
1 + SR2

max +m(1 + SR2
max)

)
, (19)

where SR2
max is the largest attainable Sharpe ratio based on investments in the bench-

marks only and m is the number of predictors that the model retains, ranging from zero,

for the IID model, to M , for the all-inclusive model.

Next, following Barillas and Shanken (2018), we formulate the prior on alpha as

α|ΣRR, D ∼ N (0, ηΣRR) , (20)
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where η > 0 controls for the prior spread. It then follows that α′(ηΣRR)−1α has a Chi-

square distribution with N + K − k degrees of freedom. Hence, E(α′Σ−1
RRα|ΣRR, D) =

η (N +K − k).

Gibbons et al. (1989) associate α̂′Σ̂−1
RRα̂ with the difference between two squared

Sharpe ratios, i.e.,

α̂′Σ̂−1
RRα̂ = ŜR

2
(R,F )− ŜR

2
(F ), (21)

where ŜR
2
(F ) is based on benchmark factors only, and ŜR

2
(R,F ) employs both bench-

mark factors and test assets. In our setup, due to the rotation between factors and

“redundant” factors, (R,F ) consists of the maximal number of factors and test assets.

Hence, ŜR
2
(R,F ) is identical across all considered models. By contrast, the second term

ŜR(F ) varies across the models, while ŜR(F ) attains its minimum value for the CAPM

and maximum when all K factors are retained. In the spirit of Barillas and Shanken

(2018) and Chib et al. (2020), we set the expected value of the chi-squared distributed

variable to the maximum value for the admissible Sharpe ratio relative to the market,

i.e., SRmax = SR(R,F ) = τSR(Mkt), where τ refers to the prior Sharpe ratio multiple.

To illustrate, for τ = 1.5, the prior Sharpe ratio for the tangency portfolio based on a

candidate model is 50% higher than the market Sharpe ratio.

It then follows that

E(α′Σ−1
RRα|ΣRR, D) = η (N +K − k) =

(
τ 2 − 1

)
SR2(Mkt). (22)

The parameter η is then given by

η =
(τ 2 − 1)SR2(Mkt)

(N +K − k)
. (23)
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Finally, equating the variance of α in the hypothetical sample (equation (19)) with the

prior variance in equation (20) and using η from equation (23), we obtain

T0 =
(N +K − k) (1 + SR2

max +m(1 + SR2
max))

(τ 2 − 1)SR2(Mkt)
. (24)

By setting T0, the size of the hypothetical sample, we conclude the prior derivation.

The resulting prior is sound. First, the prior is informed for the comprehensive pa-

rameter space. Moreover, as more predictors are included, the model pricing abilities can

improve. Hence, the prior is more strongly weighted against time-varying parameters be-

cause T0 and m are positively related. Likewise, when more factors are included, beyond

the market, the admissible squared Sharpe ratio essentially increases. Thus, the prior is

more strongly weighted against mispricing. Recall also from the marginal likelihood ex-

pressions that including more factors, beyond the market, leads to higher penalty. Thus,

the posterior probability is weighted against deviations from the unconditional CAPM.

Our prior specification for alpha resembles that of Pástor and Stambaugh (2000),

namely, α|Σ ∼ N
(
0, σ2

α

(
1
s2

ΣRR

))
, where σ2

α reflects the degree of beliefs in the pricing

model, and s2 is the cross-sectional average of the test asset residual variances. The

prior on α is proportional to ΣRR to avoid exploding Sharpe ratios. Note that in Pástor

and Stambaugh (2000), the quantity α′Σ−1
RRα could grow with the addition of more tests

assets, while we bound that expression. The following relation is useful to map σ2
α, the

prior confidence in model pricing abilities, into the length of the hypothetical sample

T0 =
s2

σ2
α

(
1 + SR2

max +m
(
1 + SR2

max

))
. (25)

Derivations of T0 for other asset pricing models, described in Table 1, are in Online

Appendix F.

In the empirical experiments that follow, we exclusively use factors as test assets, as
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in Barillas and Shanken (2018) and Chib et al. (2020). That is, we consider the special

case of N = 0, while the developed setup is flexible enough to include incremental test

assets. Thus, the number of test assets is K − k, which is the number of factors that are

not included on the right-hand side of regression equation (3).

3.5 Incremental Remarks on the Methodology

We make three incremental remarks on the methodology section. First, it is recognized in

the literature that asset pricing inferences could be sensitive to the collection of test assets.

As noted earlier, in the empirical analysis, when a model contains k factors, the remaining

14 − k “redundant” factors become the test assets. While our methodology allows to

include additional test assets, such as characteristic- and industry-sorted portfolios, we

exclusively focus on factors as test assets to assess their relative performance. Our choice

of test assets draws on Barillas and Shanken (2017). They suggest that test assets are

irrelevant for model comparison, i.e., whether each model is able to price the factors in

the other model. Instead, only factor returns are required to conduct a relative test of

model comparison.

Second, we model stock return innovations as conditionally normal, while Arnott

et al. (2019) show that the vast majority of factor returns are fat-tailed. However, the

predictive distribution of stock returns in our setup substantially departs from normality.

For one, integrating out the parameter space, the distribution of stock returns becomes

Student’s-t. Further accounting for model uncertainty makes the predictive distribution

even more fat-tailed due to mixing various t densities. In particular, one can draw returns

from the predictive distribution in three steps. The first is to draw a factor model by

generating a uniform random variable to select a model based on cumulative model pos-

terior probabilities. Second, conditioned on the model, underlying parameters are drawn

from the joint normal-inverted-Wishart densities. Third, conditioned on the parameters,
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returns are drawn from a normal distribution. While the predictive distribution can be

simulated by repeating these three steps, we have still been successful in deriving analytic

expressions for the vector of mean returns and the covariance matrix. Model-specific first

two moments are derived in Online Appendix G. Moments for the integrated model follow

through equations (4), (5), and (6). We acknowledge that our findings are associated with

conditional normality, while departing from that assumption could establish avenues for

future research.

Third, while we develop a prior in the context of cross-sectional asset pricing, it would

be useful, for completeness, to describe informed priors inspired by time-series economet-

rics. To start, Kandel and Stambaugh (1996) center the prior on the predictive regression

R-squared around zero. Wachter and Warusawitharana (2009, 2015) further develop the

Kandel-Stambaugh no-predictability prior. Innovative priors are also proposed by Pas-

tor and Stambaugh (2009), who impose negative correlation between the innovations in

predictive regressions and expected returns to maintain mean reversion; Avramov et al.

(2017), who propose taking cues from various consumption-based models for understand-

ing the riskiness of equities over the long run; and Giannone et al. (2015), who focus on

coefficients in vector autoregressions.16 The latter approach can motivate persistent fac-

tor risk premia and factor loadings modeled as latent variables. We leave this potentially

interesting channel for future work.

4 Data

We focus on 14 representative asset pricing factors that are prominent in the asset pricing

literature. We begin with the Fama-French five-factor model (Fama and French (2015))

16Note that time-series goodness of fit, even in asset pricing regressions, does not translate into cross-
sectional pricing abilities, a point made by Chen et al. (1986). Thus, in our setup, it is the Sharpe ratio
that plays a dominant role in formulating the prior, while the abovementioned papers focus on either
R-squared or autocorrelation.
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that consists of the market (MKT), size (SMB), value (HML), profitability (RMW), and

investment (CMA), and augment it with momentum (MOM, from Carhart (1997) and

Fama and French (2018)). We also include two behavioral factors, i.e., post-earnings an-

nouncement drift (PEAD) and financing (FIN) from Daniel et al. (2020). The additional

factors include quality-minus-junk (QMJ, from Asness et al. (2019)), betting-against-

beta (BAB, from Frazzini and Pedersen (2014)), mispricing factors related to manage-

ment (MGMT) and performance (PERF) from Stambaugh and Yuan (2017), liquidity

(LIQ, from Pástor and Stambaugh (2003)), and intermediary capital (ICR, from He et al.

(2017)).17

We follow Welch and Goyal (2008) and employ 13 macro predictors, including the

dividend price ratio (dp), the dividend yield (dy), the earnings price ratio (ep), the

dividend payout ratio (de), the stock variance (svar), the book-to-market ratio (bm), the

net equity expansion (ntis), the yield on Treasury bills (tbl), the long-term yield (lty),

the long-term rate of returns (ltr), the term spread (tms), the default yield spread (dfy),

and inflation (infl). Table 2 provides the detailed definitions of each factor (Panel A)

and macro predictor (Panel B).

The sample period ranges from June 1977 to December 2016 for a total of 475 monthly

observations. In Table 3, Panel A reports the means, medians, and standard deviations

of monthly factor returns, as well as the monthly CAPM α and its corresponding t-

statistics. All factors have positive average returns, ranging from 0.22% per month for

SMB to 1.13% for ICR. While ICR has the highest average return, it also has the highest

volatility, followed by MOM, while all other factors are less volatile than the market

portfolio. All factors, except for SMB, display statistically significant and economically

sizable CAPM α. BAB yields the highest CAPM α, followed by FIN and PERF.

17We consider the tradable version of the liquidity (LIQ) and intermediary capital (ICR) factors to
facilitate model interpretation and comparison. In our setup, alpha indicates model mispricing only if
the factors are tradable.
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In addition, the correlations between factor returns range between −0.55 (between

MKT and QMJ) and 0.81 (between MKT and ICR). As expected, value- and investment-

related factors such as HML, CMA, FIN, and MGMT are highly correlated. In addition,

momentum- and profitability-related factors such as RMW and QMJ, MOM and PERF,

and QMJ and PERF also exhibit high correlations.

Panel B reports the means, medians, standard deviations, and AR(1) coefficients of

the monthly macro predictors. Most macro predictors are highly persistent with AR(1)

coefficients above 0.94, except for svar, ltr, and infl. All AR(1) coefficients are less than

one, indicating a slow mean reversion.

5 Probability Analysis

5.1 Predictive Regressions

We start by applying the BMA procedure to multivariate predictive regressions, per

Section 3.2. We consider three scenarios based on equation (11): (i) include only macro

predictors, i.e., B1 6= 0 and B2 = 0, (ii) include macro predictors with interactions

between predictors, i.e., B1 6= 0 and B2 6= 0, and (iii) include macro predictors with

and without interactions. Note that some combinations of macro predictors are jointly

redundant. For instance, the dividend payout ratio (de) is the difference between the

dividend price ratio (dp) and the earnings price ratio (ep). Therefore, among the 8

(= 23) possible inclusion/exclusion combinations, we restrict the model universe to 5

combinations: one without any predictor, three with only one predictor, and one with

two predictors. Similarly, the term spread (tms) is the difference between the long-term

yield (lty) and the yield on Treasury bills (tbl). Hence, we consider only five models. The

remaining seven predictors contribute 27 combinations. Thus, the model space consists

of 3,200 (= 25× 27) combinations for the first two scenarios. The third scenario consists
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of 6,399 (= 2 × 25 × 27 − 1) combinations, which obtains as the union of the first two

scenarios while excluding the overlapping specification of an intercept-only model.

Posterior probability is assigned to each candidate model. The BMA routine then

allows us to evaluate the relative importance of every individual predictor by its cumu-

lative inclusion probability, computed as A′P , where for the first two scenarios, A is a

3, 200 × 13 matrix representing all forecasting models by their unique combinations of

zeros and ones, with zeros for the exclusion and ones for the inclusion of predictors, re-

spectively, and P is a 3, 200 × 1 vector including posterior probabilities for the models.

For the third scenario, A is a 6, 399× 13 matrix and P is a 6, 399× 1 vector.

Table 4 presents the cumulative posterior probabilities for the macro predictors in

predictive regressions. For the case of no interaction, the inclusion probability is ap-

proximately 100% for the dividend yield (dy), followed by the stock variance (svar) at

95%, the earnings price ratio (ep), the dividend payout ratio (de), and the long-term rate

of return (ltr) at 85%. Moving to the case with interactions, dy, svar, and the default

yield spread (dfy) all have an inclusion probability close to 100%. On the one hand, the

inclusion of two stock characteristics, namely, dy and svar, is strongly supported by the

data regardless of the model specification. On the other hand, the cumulative posterior

probabilities significantly drop for the book-to-market ratio (bm), the Treasury bill yield

(tbl), ltr, and the term spread (tms). Moreover, the probability of including interactions

(B2 6= 0) is unity. That is, future returns depend on levels, squared values, and inter-

actions between pairs of macro predictors. Overall, the stylized findings from predictive

regressions motivate us to consider time-varying factor loadings and factor risk premia in

the subsequent assessment of factor models.
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5.2 Factor Models

We apply the BMA procedure to conditional and unconditional asset pricing models, per

Section 3.3. Our model space includes 14 asset pricing factors and 13 macro predictors.

Panel A of Table 1 lists the candidate models considered in the paper. We restrict

the model space by including the market as a factor (rather than a test asset) in all

specifications except for the single combination when all factors are excluded (and only

macro predictors serve as explanatory variables). Starting with unconditional models, the

initial model space contains 213 +1 (= 214−1 +1) combinations. We also discard the single

combination with all factors included and no factor as a test asset. Therefore, the final

model space contains 213 (= 213 +1−1) unconditional combinations for both M1 and M2.

For conditional models specified through M3 and M4, each includes 213 × (25 × 27 − 1)

combinations for inclusion/exclusion of the factors and predictors.18 Collectively, the

integrated model accommodates a collection of over 52 million candidate models.19

We start by examining the model probability. If a few models record sufficiently high

posterior model probabilities, model uncertainty is not a primary concern and model

selection can deliver the right guidance about the factors and predictors that matter the

most. In contrast, if a large number of candidate models have meaningful probabilities,

accounting for model uncertainty is essential and rationalized from the Bayes rule. We

first compute the posterior probability for each candidate model and then rank all models

based on their probabilities from highest to lowest.

Figure 1 plots the cumulative posterior probabilities for the universe of candidate

models under different prior Sharpe multiples, i.e., τ = 1.25, 1.5, 2, and 3. We follow

18As previously discussed, there are 213 unconditional combinations. In addition, as noted in Section
5.1, some macro predictors are jointly redundant, resulting in 25×27 predictor combinations. We further
exclude the single combination including no predictor, i.e., the unconditional models specified in M1 and
M2, resulting in 25× 27 − 1 predictor combinations.

19The total number of candidate models in M1 to M4 is computed as 2×213 +2×213× (25×27−1) =
52, 428, 800.
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Barillas and Shanken (2018) to consider τ = 1.5 as the baseline case. We find that the 10

(100, 500) top-ranked individual models account for a cumulative posterior probability

of 30% (76%, 93%), suggesting that there is no clear winner across the whole space

of potential factor models. Instead, a plethora of models that differ in the inclusion

of factors, predictors, and mispricing record a positive and meaningful probability of

governing the joint distribution of stock returns. Only when we adopt a prior Sharpe

multiple of 3 do the best 10 models achieve a nontrivial cumulative posterior probability

of 88%. From a practical investment management perspective, extremely high Sharpe

ratios, relative to the market, are unlikely. Thus, evidence suggests that multiple distinct

models could govern the joint dynamic of stock returns, which reinforces the role of model

uncertainty.

Beyond probabilities for factor models, we next compute the cumulative posterior

probabilities of individual factors and macro predictors. In particular, the posterior

inclusion probability of a factor is given by

P (k included|D) =
L∑
l=1

P (Ml|D)1{k included in Ml}. (26)

Similarly, the posterior inclusion probability of a predictor is given by

P (m included|D) =
L∑
l=1

P (Ml|D)1{m included in Ml}. (27)

The results are reported in Table 5. Panel A presents the cumulative posterior prob-

abilities for the factors under different prior Sharpe ratio multiples. Several findings are

worth noting. First, consider the baseline case τ = 1.5. We find that post-earnings an-

nouncement drift (PEAD) and quality-minus-junk (QMJ) display a posterior inclusion

probability of close to 100%, followed by investment (CMA), size (SMB), intermediary

capital (ICR), and management (MGMT)—which all achieve a posterior inclusion prob-
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ability of at least 90%, indicating their prominence in pricing other factors beyond the

market. For perspective, among the six factors proposed prior to 2015, only SMB displays

a high inclusion probability. On the other hand, five out of the eight factors proposed

after 2015 exhibit high inclusion probability, suggesting that despite the expanding factor

zoo, several new factors, both fundamental and behavioral, offer incremental competence

in pricing the existing factors.

Second, PEAD, QMJ, and ICR stand out across different priors, with an inclusion

probability of at least 93% in all cases. Moving to SMB, CMA, and MGMT, the inclusion

probability is high for low τ values but diminishes for high τ values. In contrast, betting-

against-beta (BAB) exhibits high inclusion probability only for τ = 3, when the prior is

tilted toward rather extreme Sharpe ratios. It would thus be challenging for the BAB

factor to clear prior asset pricing thresholds, such as reasonable Sharpe ratios (Ross

(1976)). Collectively, the pricing abilities of widely explored factors depend on one’s

prior views about how large the Sharpe ratio could be.

Third, across all τ values, there are five to seven factors with a posterior inclusion

probability of at least 90%, although the identified factors could vary. Our findings

support a parsimonious model advocated by the empirical literature, while factors with

high inclusion probabilities originate from distinct economic foundations rather than an

established asset pricing model. For instance, PEAD, QMJ, and ICR are proposed by

three independent works, and this combined specification has not been examined in the

previous literature.

Finally, profitability (RMW) appears redundant. This could be due to the high cor-

relation between RMW and QMJ (0.75 from Panel A of Table 3), as profitability is also

one of the quality characteristics in QMJ.20 Empirically, QMJ dominates RMW in pricing

other factors; hence, we observe persistent inclusion for QMJ and exclusion for RMW.

20The QMJ factor goes long high-quality stocks and shorts low-quality stocks, where high-quality
stocks are those with high profitability, growth, and safety.
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Panel B of Table 5 implements a similar analysis for the macro predictors. Perhaps

not surprisingly, in the presence of asset pricing factors, the average inclusion probability

is considerably lower for macro predictors than for factors. Taking the baseline case

τ = 1.5 as an example, the long-term yield (lty) has an inclusion probability of 97%,

followed by the dividend yield (dy) with an inclusion probability of 68%. Moving to τ = 3,

more macro predictors display high inclusion probability, with the net equity expansion

(ntis), dy, the yield Treasury bills (tbl), and the term spread (tms) having an inclusion

probability of at least 90%. The rising inclusion probability with practically infeasible

Sharpe ratios provides an important clue that strong in-sample predictive power of macro

items could be associated with only mild forecasting power out of sample. Last, the book-

to-market ratio (bm), the long-term rate of return (ltr), the default yield spread (dfy),

and inflation (infl) are always discarded, regardless of the prior. Evidence from Panel

B thus reinforces the notion that asset pricing factors should be augmented with macro

predictors to better capture cross-sectional and time-series effects in average returns.

In addition to the cumulative inclusion probabilities for asset pricing factors and

macro predictors, we explore several other model features. The results are tabulated in

Panel C of Table 5. We start with the probability of factor models with time-varying

parameters, defined as the sum of posterior probabilities for all models included in M3 and

M4. The conditional models display an aggregate posterior probability of 100%, implying

that our Bayesian procedure uniformly favors models with time-varying parameters, even

when prior beliefs are weighted against the inclusion of macro predictors.21 Our findings

further highlight the importance of incorporating nonlinearities in asset pricing models,

especially by conditioning on the macroeconomic states—a point also emphasized by

Chen et al. (2021) in a nonparametric setup. Furthermore, our results complement prior

21By construction, the sum of the posterior probabilities for all models included in M1 to M4 equals
one. Our findings indicate that the aggregate posterior probability of the unconditional models included
in M1 and M2 is virtually zero.
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work that focuses on the nonlinear relationship between firm characteristics and returns

(e.g., Freyberger et al. (2020)) and that employs a conditional factor model where the

factor loadings are nonlinear in firm characteristics (e.g., Gu et al. (2021)).

Another essential feature in our BMA framework is the probability of model mispric-

ing, defined as the sum of posterior probabilities for all models included in M2 and M4.

For τ = 1.25, 1.5, and 2, the mispricing probability varies between 58% and 69%. Even

for sensible prior Sharpe ratios, the findings clearly highlight a prominent mispricing

component in factor models. This indicates that zero-alpha models selected from the

collection of factors and predictors that we analyze may not adequately explain cross-

sectional and time-series effects in stock returns. Additionally, note that the probability

of mispricing evolves only from conditional models, as the unconditional counterparts

record near zero probability. Overall, the evidence suggests that factor loadings, risk

premiums, and mispricing all vary with macroeconomic conditions.

We also report the (equal-weighted) average of (i) hypothetical sample size T0, which is

inversely related to τ as defined in equation (24), and (ii) the shrinkage intensity, defined

as T0
T ∗

= T0
T0+T

. The amount of shrinkage increases when T0 increases or equivalently, when

τ declines.22 Intuitively, when the prior Sharpe ratio multiple is low, more shrinkage

is applied to penalize mispricing and time-varying factor risk premiums. For τ = 1.5

(τ = 3), the average weight of the actual sample is approximately 20% (60%), and the

remaining 80% (40%) is assigned to the hypothetical sample, where α0, α1, and β1 are

set to zero in equation (3).

Collectively, we show that a plethora of models that differ in the inclusion of factors,

predictors, and mispricing record a positive and meaningful probability of governing the

22Specifically, the posterior regression means are a weighted average of estimates in the actual sample
(with a weight of T

T0+T ) and the hypothetical sample (with a weight of T0

T0+T ), as shown in equations
(B.23) and (B.24) for unrestricted models and equation (B.39) for restricted models. Therefore, higher
T0 implies more shrinkage toward the hypothetical sample, i.e., the model estimates are weighted against
mispricing.
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joint dynamics of stock returns. Meanwhile, our BMA approach provides a reasonable

setup for analyzing the cross section of expected stock returns.

6 Out-of-Sample BMA Model Performance

6.1 Efficient Portfolios: Sharpe Ratio

In this subsection, we assess the out-of-sample performance of the integrated model. Our

analysis is based on mean-variance efficient portfolios that are derived form the predictive

distribution that integrates out the within-model parameter space (estimation risk) and

the model space (model disagreement). We study performance through Sharpe ratios

and downside risk measures. For comparison, we consider four benchmark models that

are widely used by academics and practitioners: (i) the CAPM, i.e., only adjusting for

the market factor (MKT), (ii) the Fama-French 3-factor model (FF3) consisting of the

market factor (MKT), the size factor (SMB), and the value factor (HML) (Fama and

French (1993)), (iii) the Fama-French 6-factor model (FF6) consisting of the market

factor (MKT), the size factor (SMB), the value factor (HML), the profitability factor

(RMW), the investment factor (CMA), and the momentum factor (MOM) (Fama and

French (2018)), and (iv) the AQR 6-factor model (AQR6) consisting of the market factor

(MKT), the size factor (SMB), the value factor (HML), the momentum factor (MOM), the

betting-against-beta factor (BAB), and the quality-minus-junk factor (QMJ) (Frazzini

et al. (2018)). We further consider the three highest posterior probability models based

on the Bayesian procedure. Our prior is that the Bayesian approach could deliver stable

out-of-sample performance, given (i) its empirical merits in identifying single competent

models and (ii) its conceptual foundation from the Bayes rule.

Our first experiment examines the Sharpe ratio of the tangency portfolio. We divide

the full sample into two periods, i.e., the in-sample period and the out-of-sample perfor-
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mance period. Following Barillas and Shanken (2018), we consider two in-sample periods

that correspond to half of the sample (denoted T
2
) and two-thirds of the sample (denoted

2T
3

).23 For benchmark models, we use the in-sample period returns to derive the tangency

portfolio weights and apply the optimal weights to the out-of-sample returns. We can

then compute the out-of-sample Sharpe ratios. In the Bayesian setup, we use all data in

the in-sample period to compute posterior probabilities and predictive moments based

on the integrated model. A detailed description of computing model-specific predictive

moments is provided in the Online Appendix G.24

We tabulate the in-sample and out-of-sample annualized Sharpe ratio in Table 6,

with Panel A for the four benchmark models and Panel B for models based on the

Bayesian procedure with a prior Sharpe multiple of τ = 1.5. The columns “EST” report

the in-sample Sharpe ratio, and the columns “OOS” report the out-of-sample Sharpe

ratio. For perspective, consider 2T
3

as the in-sample period. First, the integrated model

(denoted BMA) outperforms the benchmark models both in sample and out of sample.

For instance, the integrated model generates an in-sample annualized Sharpe ratio of

2.542, while the best benchmark model AQR6 delivers an annualized Sharpe ratio of

1.829. In addition, the integrated model continues to deliver superior out-of-sample

performance, with an annualized Sharpe ratio of 1.240, which offers a 8% improvement

compared to the best benchmark model AQR6, which has an annualized Sharpe ratio of

1.152.25

23The in-sample period that corresponds to T
2 ( 2T

3 ) ranges from June 1977 to December 1997 (Decem-
ber 2013), for a total of 247 (319) monthly observations.

24The derivation builds on Avramov and Chordia (2006) with several important modifications to
account for economically informed prior beliefs and model integration. The tangency portfolio for all
models is constructed using the 14 benchmark assets that rotate between factors and test assets, as noted
earlier, depending on the factor model. The predictive moments are computed based on equations (G.1)
and (G.2) for factors and equations (G.3) and (G.4) for test assets. Moments for the integrated model
follow through equations (4), (5), and (6).

25While we focus on four observable factor models as benchmarks, untabulated analyses further con-
sider the tangency portfolio based on the unconditional model with 14 factors. Taking 2T

3 as the in-sample
period, the integrated model continues to outperform the unconditional model (annualized Sharpe ra-
tio at 1.019) by 22%. In addition, we examine the equal-weighted portfolio with 14 factors in the full
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Second, the three top-ranked individual models (denoted Top 1, Top 2, and Top 3),

namely, the three highest posterior probability models, also deliver sound out-of-sample

performance. The annualized Sharpe ratio ranges from 1.163 to 1.425 out of sample,

indicating a 1% to 24% improvement from the best benchmark model AQR6. Note

that the in-sample posterior probabilities of the top-ranked models are indistinguishable,

suggesting that they are virtually equally likely to govern the joint distribution of stock

returns. However, we observe more variations in their out-of-sample performance. For

instance, the second-ranked (i.e., Top 2) model turns out to be the best performing and

it significantly outperforms AQR6, while the third-ranked model only edges out AQR6.

Importantly, the integrated model does not rely on the crucial assumption that a single

or a few top-ranked models must be correct, while all other specifications should be

discarded. For perspective, the integrated model outperforms two out of the three top-

ranked individual models.

Panels C and D have the same layout as Panels A and B, but we further impose the

Regulation T constraint. In particular, to ensure that the tangency portfolio does not

rely on extreme, possibly infeasible long and short positions in real time, we set the sum

of absolute tangency portfolio weights to be smaller than or equal to 2, i.e.,
∑14

i=1 |wi| ≤ 2.

As expected, the Regulation T constraint reduces the Sharpe ratio for nearly all models

both in sample and out of sample.

Taking 2T
3

as the in-sample period for an example, first, the integrated model produces

an out-of-sample annualized Sharpe ratio of 0.979 and outperforms all benchmark models

by a significant margin. For instance, the annualized Sharpe ratio is 0.785 for the best

benchmark model AQR6, indicating that the integrated model outperforms by 25% after

sample. It delivers an annualized Sharpe ratio of 1.705 and a monthly FF6-adjusted (AQR6-adjusted)
return of 0.215% (0.121%). For perspective, the integrated model delivers an annualized Sharpe ratio of
2.214 and a monthly FF6-adjusted (AQR6-adjusted) return of 0.324% (0.220%), indicating a 30% to 82%
improvement across different performance metrics. Our results highlight that the strong out-of-sample
performance of the integrated model goes beyond the inherent positive alphas of the asset pricing factors
in the full sample.
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applying sensible economic restrictions. Thus, when efficient portfolios are admissible, the

performance gap between the integrated model and benchmark models widens. Second,

we continue to find superior performance among top-ranked individual models, and they

outperform AQR6 by 29% to 82%. Collectively, the Bayesian approach is able to detect

outperforming models in the presence of economic restrictions.

With a shorter in-sample period (T
2
), we observe much lower out-of-sample Sharpe

ratios as well as larger gaps between in-sample and out-of-sample performance across

nearly all model specifications with and without economic restrictions. This is possibly

due to overfitting attributable to the short in-sample period (247 months).26 Importantly,

all models based on the Bayesian procedure provide higher Sharpe ratios than the best

benchmark model AQR6 with and without economic restrictions, especially in the former

case. For instance, the integrated model outperforms AQR6 by 26% and the top-ranked

individual models outperform AQR6 by 75% to 80% after imposing the Regulation T

constraint. Overall, while we focus on the 2T
3

case to interpret the findings, the Bayesian

approach continues to deliver superior and more admissible out-of-sample performance

than all benchmark models for the shorter in-sample period.

Our next experiment focuses on the GMVP, which relies exclusively on the covariance

matrix formulated in equation (5). If model uncertainty has meaningful asset pricing

implications, the GMVP based on the integrated model should provide investment payoffs

characterized by lower risk measures compared to benchmarks.27 We report the results

in Panels E and F of Table 6, with Panel E for the benchmark models and Panel F for

26There are 14 factors and 11 predictors in total because some macro predictors are jointly
redundant, as previously described. The total number of estimated parameters is given by
(K − k)

[
(1 + m) (1 + k) + K−k+1

2

]
+ k

(
1 + m + k+1

2

)
, where K stands for the maximal number of fac-

tors (14), and k and m stand for the number of included factors and predictors, respectively. The number
of estimated parameters varies between 119 (when m = 0) and 812 (when m = 11 and k = 7).

27Garlappi et al. (2007) document that in the presence of a stable and significant degree of ambiguity
aversion, the GMVP could play an important role in the optimal portfolio choice because it is not subject
to ambiguity about expected returns. While this is not the focus of our work, our findings extend to
ambiguity-averse investors.
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models based on the Bayesian procedure.

Taking 2T
3

as the in-sample period for an example, the integrated model generates an

annualized out-of-sample Sharpe ratio of 1.101 and outperforms all competing models by

a considerable margin. For instance, the integrated model delivers a 35% higher Sharpe

ratio than the best benchmark model (FF6, annualized Sharpe ratio at 0.818) and 19%

higher Sharpe ratio than the best individual model (Top 1, annualized Sharpe ratio at

0.924).28 Taken together, our findings highlight a sizable impact of model uncertainty on

the covariance matrix of stock returns, a novel feature in our BMA setup.

6.2 Efficient Portfolios: Downside Risk

Beyond the out-of-sample Sharpe ratio, it is worth evaluating other potential risks, es-

pecially the downside risk in trading the tangency portfolio.29 Using 2T
3

as the in-sample

period, we report the out-of-sample mean, standard deviation, skewness, and excess kur-

tosis of the monthly excess returns and the maximum drawdown for the tangency portfo-

lio.30 We follow Gu et al. (2020) to define the maximum drawdown throughout the entire

sample as

MDD = max
0≤t1≤t2≤T

(Yt1 − Yt2) , (28)

where Yt1 and Yt2 refer to the cumulative log return from month 0 to t1 and t2, respectively.

We tabulate the results in Table 7, where Panels A and B show the results for tan-

gency portfolios constructed from benchmark models and models based on the Bayesian

28While the primary purpose of examining GMVP is to understand how model uncertainty affects
portfolio risk, it could still have a meaningful impact on the Sharpe ratio, depending on the risk-return
trade-off. We will shed more light on the risk implications later.

29Related work shows that individual anomaly payoffs are prone to large drawdowns. For instance,
Daniel and Moskowitz (2016) document that momentum strategies are characterized by occasional large
crashes.

30For perspective, skewness and excess kurtosis are equal to zero under a normal distribution.
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procedure with τ = 1.5, respectively, and Panels C and D report similar statistics after

imposing the Regulation T constraint. Given their economic relevance, we focus on Pan-

els C and D to interpret our findings. First, when compared to benchmark models, the

higher Sharpe ratio of the integrated model can be attributed to a combination of higher

returns and lower/similar return volatility. Second, the integrated model exhibits less

negative skewness, lower excess kurtosis, and a lower maximum drawdown. For instance,

the maximum drawdown for the integrated model is 44%, while the benchmark models

experience a larger drawdown between 51% and 79%. Notably, the top-ranked individual

models are more volatile and the maximum drawdown varies in a wide range between

32% and 57%.

Panels E and F of Table 7 report similar statistics for GMVPs, with Panel E showing

results for GMVPs constructed from benchmark models and Panel F for those constructed

from models based on the Bayesian procedure with τ = 1.5. Notably, risk metrics are

particularly relevant in the context of GMVP, as GMVP relies exclusively on the covari-

ance matrix and if model uncertainty plays a significant role in asset pricing, we expect

the GMVP based on the integrated model to be less risky. Several findings are notewor-

thy. First, we find that the GMVP based on the integrated model is considerably less

volatile than the benchmark models. For instance, monthly realized volatility for GMVPs

based on the benchmark models ranges between 0.956% and 2.127%, while appears to

be only 0.756% for the integrated model, indicating a 21% to 64% volatility reduction.

Because expected returns across the various specifications are not materially different,

the lower volatility characterizing the Bayesian approach translates into a substantially

higher out-of-sample Sharpe ratio. Second, while most benchmark models are negatively

skewed, the integrated model displays positive skewness. Third, the integrated model

exhibits a lower maximum drawdown than all benchmark models. For perspective, the

maximum drawdown for the benchmark models ranges between 6% and 27%, compared
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to 5% for the integrated model. Collectively, the BMA approach mitigates the downside

risk of both the tangency portfolio and the GMVP.

6.3 Additional Analyses

To obtain a complete outlook of integrated model performance over time, Figure 2a plots

the cumulative excess returns of an initial investment of $1 for the market portfolio (MKT)

and three BMA tangency portfolios with τ = 1.5. The BMA tangency portfolios vary

in the in-sample period as previously discussed. While the ultimate investment outcome

appears similar for the market and BMA portfolios, the BMA portfolios experience a

more stable increase over time. Their performance is much less volatile than the market

portfolio. Importantly, we observe only modest declines for BMA portfolios when the

overall market often drops significantly, consistent with the high Sharpe ratio and low

downside risk out of sample. Our findings are similar across all three in-sample periods.

Figure 2b plots similar cumulative excess returns but focuses on the out-of-sample

periods: one starts from January 1998 (T
2
) and another starts from January 2004 (2T

3
). We

further consider BMA tangency portfolios with and without the Regulation T constraint

and the GMVP. Taking 2T
3

as the in-sample period for an example, the BMA tangency

portfolio with the Regulation T constraint consistently outperforms its unconstrained

counterpart and the market portfolio over time. We also confirm that a longer in-sample

period helps improve the performance of the Bayesian approach.

Thus far, we have assessed the out-of-sample performance based on the baseline prior

Sharpe multiple of 1.5. As a robustness check, we examine the sensitivity of our findings

to alternative prior Sharpe multiples. Table 8 has a similar layout to Table 6, with Panel

A for the unconstrained tangency portfolio, Panel B for the tangency portfolio with the

Regulation T constraint, and Panel C for the GMVP. Taking 2T
3

as the in-sample period

for an example, the integrated model continues to outperform the best benchmark model
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from Table 6 across all τ values. As shown in Panel A (Panel B), the out-of-sample

annualized Sharpe ratio of the integrated model is 1.208 (0.976), 1.271 (1.018), and 1.253

(0.819) when τ = 1.25, 2, and 3, while the best benchmark model AQR6 delivers an

out-of-sample annualized Sharpe ratio of 1.152 (0.785) before (after) applying economic

restrictions. The integrated model outperforms AQR6 by 5% to 10% without economic

restrictions, and outperforms AQR6 by 4% to 30% with economic restrictions. Moving to

the GMVP in Panel C, the integrated model delivers a higher Sharpe ratio than the best

benchmark model FF6 across all τ values, and the improvement in Sharpe ratio ranges

from 17% to 37%. This more decisive evidence on the GMVP confirms the meaningful

impact of model uncertainty in asset pricing.

In addition, while the top-ranked individual models display similar in-sample posterior

probabilities and deliver promising out-of-sample performance in general, we observe

considerable variations in their performance and relative rankings. As shown in Panel

B, when τ = 2, the first-ranked (second-ranked) model generates an annualized Sharpe

ratio of 1.628 (0.526) after applying economic restrictions, and it significantly outperforms

(underperforms) the best benchmark model AQR6 with an annualized Sharpe ratio of

0.785 and the integrated model with an annualized Sharpe ratio of 1.018. Moving to the

GMVP in Panel C, the integrated model outperforms all top-ranked individual models

for τ = 1.25 and 2 and outperforms two out of three top-ranked individual models for

τ = 3. Furthermore, the third-ranked model has the highest out-of-sample Sharpe ratio

for τ = 1.25 and 3, while the first-ranked model yields the highest out-of-sample Sharpe

ratio for τ = 2.

Overall, accounting for model uncertainty through BMA achieves a rather stable,

superior, and admissible out-of-sample Sharpe ratio and mitigates the downside risk of the

investment. Our findings are robust to imposing economic restrictions on the prior Sharpe

ratio and stock positions as well as using alternative in-sample periods. The analyses of
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the GMVP further highlight the impact of model uncertainty on the covariance matrix

of stock returns. In addition, the Bayesian approach is also instrumental in identifying

competent models, while we should remain cautious that model selection based on a

single or a few top-ranked models could provide an unstable description of asset return

dynamics.

7 Dissecting Model Uncertainty

7.1 Variance Decomposition

We provide additional evidence to highlight the importance of model uncertainty in shap-

ing the investment opportunity set. Our first experiment compares the sample variance of

factor returns with the variance based on the integrated model. In particular, by variance

decomposition, we have

Var (rt+1) = E [Var (rt+1|zt)] + Var [E (rt+1|zt)] , (29)

where Var (rt+1) is the unconditional variance and E [Var (rt+1|zt)] is the (time-series)

average of conditional variance. The variance decomposition is conditioned on a particular

factor model and the parameter space underlying that model. For notational convenience,

we drop such dependencies.

Resorting to sample estimates, the variance of each factor should be higher than

the mean of the conditional variance. This is because, in the population, the inequal-

ity Var (rt+1) > E [Var (rt+1|zt)] is binding. However, Var (rt+1|zt) does not incorporate

model disagreement and the mixture of estimation risk, emphasized by our approach.

Thus, the variance perceived by a Bayesian investor who is perceptive of model uncer-

tainty is higher than Var (rt+1|zt).
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Taken together, the difference between the sample analog of Var (rt+1) and the sample

average of Var [rt+1|D] depends on the net effect of the two conflicting forces and remains

an empirical question. If model uncertainty plays a significant role in asset pricing, we

expect the sample average of the variance based on the integrated model to exceed the

sample (unconditional) variance.

To proceed, we compute (i) the sample average of the variance based on the integrated

model, defined as the time-series average of the diagonal elements of the covariance ma-

trix, i.e., Var [rt+1|D] in equation (5), and (ii) the sample variance computed from realized

factors returns. We consider three in-sample periods that correspond to the full sample

(T ) and half (T
2
) and two-thirds (2T

3
) of the sample under a prior Sharpe multiple of 1.5,

and compute the in-sample and out-of-sample variance for each factor.

Table 9 presents the results, with the columns “EST” and “OOS” corresponding to the

in-sample and out-of-sample results, respectively. In the full sample, 8 out of 14 factors

display higher variance based on the integrated model (denoted V̄t + Ω̄t) than the sample

variance (denoted OBS). Using 2T
3

of the sample as in-sample period, 8 out of 14 factors

display higher variance based on the integrated model than the sample variance during the

out-of-sample period. Notably, the gap between the integrated model variance and sample

variance widens considerably out of sample, and the integrated model variance is on

average 53% higher than the sample variance across all 14 factors. The integrated model

variance is also more than doubled of the sample variance for the profitability (RMW),

investment (CMA), financing (FIN), management (MGMT), and betting-against-beta

(BAB) factors.

Overall, we show that the mixture of estimation risk and model disagreement com-

ponents in the covariance matrix jointly have a sizable impact on the perceived risk,

especially during the recent out-of-sample period. The notion is that because the in-

vestor does not know the right factor model or the correct values of underlying model
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parameters, equities could be perceived to be considerably riskier than historical sample

estimates.

7.2 Time-Varying Model Disagreement

Our second experiment focuses on the model disagreement component in the covariance

matrix. In the BMA setup, the covariance matrix of stock returns is defined in equation

(5), where Vt is the weighted average of model-implied covariance, and Ωt summarizes the

disagreement among candidate factor models about expected stock returns, as defined in

equation (6). While both components account for model uncertainty, Ωt is particularly

informative for understanding the implications of model disagreement.

To measure the relative contribution of the model disagreement component to the

covariance matrix, we rely on a standard measure of information in information theory,

i.e., entropy. For instance, Van Nieuwerburgh and Veldkamp (2010) model the amount

of information transmitted as the reduction in entropy achieved by conditioning on that

additional information. Let Σ (Σ|D) be the covariance matrix before (after) the infor-

mation is revealed, and the entropy reduction is given by the ratio |Σ|
|Σ|D| , where |Σ| is the

determinant of matrix Σ. Since learning information D can reduce payoff uncertainty, a

higher ratio indicates more information acquisition and uncertainty reduction.

Similar to the entropy reduction due to additional information, we can view the Ωt

component as an entropy extension arising from model disagreement. In other words,

we measure the contribution of the model disagreement component to the covariance

matrix as an increase in entropy relative to the Vt component (the weighted average of

model-implied covariance),

EIt =
|Vt + Ωt|
|Vt|

. (30)
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We compute the relative increase in entropy for the three in-sample periods that

correspond to the full sample (T ), half of the sample (T
2
), and two-thirds of the sample

(2T
3

) under a prior Sharpe multiple of 1.5. Panel A of Table 10 reports the mean, the

95th percentile, the 99th percentile, and the maximum of the entropy increase, with the

columns “EST” and “OOS” corresponding to the in-sample and out-of-sample results,

respectively. The increase in entropy is modest, on average, but positively skewed, i.e.,

the full sample average is 1.010 but increases to 1.069 at the 99th percentile and reaches

a maximum of 1.379. Using 2T
3

(T
2
) as the in-sample period, we observe a significant

entropy increase of 1.069 (1.121) at the 99th percentile during the out-of-sample period,

and the maximum entropy increase is even more prominent at 1.085 (1.195).

Figure 3a plots the time series of the entropy increase for the three in-sample periods.

The blue dashed lines mark the end of the in-sample periods for T
2

and 2T
3

. While

the average increase in entropy is small, it spikes dramatically during major market

downturns, e.g., Black Monday in October 1987 and the recent financial crisis starting in

September 2008. Our findings support the notion that asset pricing models significantly

disagree about expected stock returns at times of crash events in the financial market,

which makes stocks appear riskier. Hence, accounting for model uncertainty could hedge

against extremely negative market conditions, consistent with our previous finding that

the BMA procedure mitigates the downside risk of the tangency portfolio and the GMVP.

Beyond the aggregate entropy increase resulting from the entire investment universe,

we estimate the contribution of every single factor to the entropy increase. In this experi-

ment, we zero out the off-diagonal elements of Ωt in equation (6) for simplicity.31 Let Ωi,t

be a matrix with only the ith diagonal element being equal to the corresponding diagonal

element of Ωt and with other elements equal to zero, where i ∈ 1, 2, ..., K, and K refers

to the maximal number of factors. Similar to the definition in equation (30), we define

31In all previous analyses, Ωt is a standard symmetric covariance matrix that captures the correlations
between factors. Unreported results employing a diagonal Ωt also confirm our main findings.
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the entropy increase attributed to factor i at time t as

EIi,t =
|Vt + Ωi,t|
|Vt|

. (31)

When each factor is associated with a small entropy increase, namely, EIi,t ≈ 1 for

every i, a first-order approximation holds. That is,
∏K

i=1EIi,t ≈ EIt. However, when the

entropy spikes, the first-order approximation no longer holds due to a large component

of higher order of mutual factors’ interactions. Therefore, we normalize the measure and

define factor i’s first-order contribution to the entropy increase as

REIi,t =

log(EIi,t)

log(EIt)∑K
j=1

log(EIj,t)

log(EIt)

. (32)

We consider three in-sample periods that correspond to the full sample (T ), half of the

sample (T
2
), and two-thirds of the sample (2T

3
) under a prior Sharpe multiple of 1.5 and

compute the in-sample and out-of-sample contribution of each factor to the increase in

entropy. The results are tabulated in Table 10, with Panels B and C for the average and

maximum factor contributions, respectively. As shown in Panel B, the liquidity (LIQ)

factor stands out, as it contributes to 21% of the total entropy increase in the full sample,

followed by the size (SMB) and betting-against-beta (BAB) factors. Jointly, the top three

factors account for 46% of the total entropy increase. Moving to the out-of-sample test

using 2T
3

as the in-sample period, the market, management (MGMT), and intermediary

capital (ICR) factors carry a sizable disagreement component and jointly contribute to

40% of the overall entropy increase.

Since the model disagreement component in the overall covariance matrix can be low

at normal times but spike occasionally, we are also interested in extreme scenarios. As

shown in Panel C, the market, SMB, BAB, MGMT, and ICR factors display drastic

entropy increases, i.e., all five factors uniformly have a maximum contribution of at least
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10% across all in-sample and out-of-sample periods. A possible underlying mechanism is

that in addition to the market factor, the other factors also vary significantly with market

conditions. For instance, the SMB factor is stronger after periods of low sentiment

because small stocks are more likely to be overpriced during high sentiment periods,

and the subsequent correction diminishes the size effect (Baker and Wurgler (2006));

the BAB factor is exposed to funding liquidity risk and exhibits lower realized returns

following periods with more binding funding constraints (Frazzini and Pedersen (2014));

the MGMT factor is significantly higher following high sentiment episodes due to the

correction of overpriced stocks in the short leg (Stambaugh and Yuan (2017)), and the

ICR factor is strongly procyclical and low intermediary capital growth coincides with

adverse economic shocks (He et al. (2017)). Collectively, the market, MGMT, and ICR

factors play a critical role in driving the time-varying model disagreement component

in the covariance matrix both on average and in the extreme, especially for the recent

out-of-sample performance. We further confirm this finding in Figure 3b, where for

each factor, we plot the contribution to the overall entropy increase over time using the

aforementioned three in-sample periods.

Overall, we find that asset pricing models significantly disagree about expected stock

returns during market crashes. Hence, accounting for model uncertainty effectively hedges

against downside risk and enhances out-of-sample performance. In addition, the market,

management, and intermediary capital factors stand out in explaining the time-varying

model disagreement component.

8 Conclusion

This paper develops a comprehensive Bayesian framework to study the cross section of

average returns and the covariance matrix in the presence of model uncertainty. The
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framework combines a large universe of candidate asset pricing models into an integrated

model based on model probabilities. In addition, prior beliefs about the entire parameter

space are economically interpretable and weighted against deviations from the uncondi-

tional CAPM. The integrated model is used to assess the strength of asset pricing factors

and macro predictors in explaining the joint distribution of stock returns.

The empirical analyses apply to a set of 14 factors and 13 macro predictors. The

model space exceeds 52 million models that differ with respect to the collection of factors

and predictors while some factor models hold exactly and others admit mispricing. We

first document that there is a fairly large number of positive probability models. Hence,

integrating factor models follows directly from the Bayes rule. We further show that the

underlying return generating process exhibits considerable mispricing and is uniformly

dominated by models with time varying parameters. Then, the post-earnings announce-

ment drift, quality-minus-junk, and intermediary capital factors are competent in pricing

other factors beyond the market factor. From an investment perspective, the integrated

model delivers a stable, superior, and admissible out-of-sample Sharpe ratio and miti-

gates the downside risk for both the tangency portfolio and the GMVP. The Bayesian

approach is also instrumental in identifying competent individual models, while model

selection based solely on top-ranked individual models could provide unstable forecasts.

Finally, asset pricing models significantly disagree about expected stock returns at times

of market crash events, while the spikes in model disagreement about expected returns

are primarily driven by market, management, and intermediary capital factors.
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Table 2: Variable Definitions

Variable Abbreviation Definition

Panel A: Asset Pricing Factors

Market MKT The excess return on the value-weighted CRSP market index over the one-month
Treasury bill rate (Sharpe (1964), Lintner (1965)).

Size SMB The small minus big firm return premium (Fama and French (1993)).
Value HML The high book-to-market minus the low book-to-market return premium (Fama

and French (1993)).
Profitability RMW The robust minus the weak return premium (Fama and French (2015)).
Investment CMA The conservative minus the aggressive return premium (Fama and French

(2015)).
Momentum MOM The winner minus the loser return premium (Carhart (1997)).
Post-earnings Announce-
ment Drift

PEAD The positive earnings surprise minus negative earnings surprise premium (Daniel
et al. (2020)).

Financing FIN The low-issuance minus the high-issuance return premium (Daniel et al. (2020)).
Quality-minus-junk QMJ The quality minus the junk return premium (Asness et al. (2019)).
Betting-against-beta BAB The low-beta minus the high-beta return premium (Frazzini and Pedersen

(2014)).
Management MGMT The underpriced minus the overpriced return premium based on six anomaly

variables related to firms’ management, including net stock issues, composite
equity issues, accruals, net operating assets, asset growth, and investment to
assets (Stambaugh and Yuan (2017)).

Performance PERF The underpriced minus the overpriced return premium based on five anomaly
variables related to firms’ performance, including distress, O-score, momentum,
gross profitability, and return on assets (Stambaugh and Yuan (2017)).

Liquidity LIQ The high-liquidity-beta minus the low-liquidity-beta return premium (Pástor
and Stambaugh (2003)).

Intermediary Capital ICR The value-weighted equity return for the primary dealer sector (He et al. (2017)).

Panel B: Macro Predictors

Dividend Price Ratio dp The difference between the log of dividends and the log of prices, where divi-
dends are 12-month moving sums of dividends paid on the S&P 500 index, and
prices are monthly averages of daily closing prices (Campbell and Shiller (1988),
Campbell and Yogo (2006)).

Dividend Yield dy The difference between the log of dividends and the log of lagged prices (Ball
(1978)).

Earnings Price Ratio ep The difference between the log of earnings and the log of prices, where earnings
are 12-month moving sums of earnings on the S&P 500 index (Campbell and
Shiller (1988)).

Dividend Payout Ratio de The difference between the log of dividends and the log of earnings (Lamont
(1998)).

Stock Variance svar The sum of squared daily returns on the S&P 500 index (Guo (2006)).
Book-to-market Ratio bm The ratio of book value to market value for the Dow Jones Industrial Average

(Kothari and Shanken (1997)).
Net Equity Expansion ntis The ratio of 12-month moving sums of net issues by NYSE listed stocks divided

by the total end-of-year market capitalization of NYSE stocks (Campbell et al.
(2008)).

Treasury Bills tbl The 3-Month Treasury Bill: Secondary Market Rate from the economic research
data base at the Federal Reserve Bank at St. Louis (Campbell (1987)).

Long Term Yield lty The long-term government bond yield from Ibbotson’s Stocks, Bonds, Bills and
Inflation Yearbook (Welch and Goyal (2008)).

Long Term Rate of Re-
turns

ltr The long-term government bond returns from Ibbotson’s Stocks, Bonds, Bills
and Inflation Yearbook (Welch and Goyal (2008)).

Term Spread tms The difference between the long term yield on government bonds and the Trea-
sury bill (Campbell (1987)).

Default Yield Spread dfy The difference between BAA and AAA-rated corporate bond yields (Fama and
French (1989)).

Inflation infl The Consumer Price Index (All Urban Consumers) from the Bureau of Labor
Statistics (Campbell and Vuolteenaho (2004)).
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Table 4: Posterior Probabilities of Predictors in Predictive Regressions

This table presents the cumulative posterior probabilities for the macro predictors in predictive regressions, computed as
A′P, where A is a matrix representing all forecasting models by their unique combinations of zeros and ones, and P is
a vector including posterior probabilities for all models. We consider three scenarios described in equation (11): (i) no
interaction (B1 6= 0 and B2 = 0), (ii) with interaction (B1 6= 0 and B2 6= 0), and (iii) combined, including both (i) and
(ii). Table 2 provides the detailed definitions of each variable.

No Interaction With Interaction Combined

dp 0.15 0.35 0.35

dy 1.00 1.00 1.00

ep 0.85 0.65 0.65

de 0.85 0.65 0.65

svar 0.95 1.00 1.00

bm 0.72 0.04 0.04

ntis 0.74 0.69 0.69

tbl 0.76 0.36 0.36

lty 0.24 0.63 0.63

ltr 0.85 0.31 0.31

tms 0.67 0.24 0.24

dfy 0.72 1.00 1.00

infl 0.24 0.24 0.24
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Table 5: Posterior Probabilities of Factors and Predictors in Asset Pricing Models

This table presents results based on the universe of candidate models using the BMA procedure for different values of τ .
The candidate models, i.e., M1 to M4, are specified in Table 1. Panel A presents the cumulative posterior probabilities for
the factors, as defined in equation (26). Panel B presents similar statistics for the macro predictors, as defined in equation
(27). Panel C reports a list of other model features, including: (i) the conditional model probability, defined as the sum of
posterior probabilities for all models included in M3 and M4, (ii) the mispricing probability, defined as the sum of posterior
probabilities for all models included in M2 and M4, (iii) the equal-weighted average of hypothetical sample size T0, as

defined in equation (24), and (iv) the equal-weighted average of shrinkage, defined as T0
T0+T

. Table 2 provides the detailed

definitions of each variable.

Panel A: Posterior Probabilities of Factors

τ = 1.25 τ = 1.5 τ = 2 τ = 3

MKT 1.00 1.00 1.00 1.00

SMB 0.98 0.94 0.97 0.11

HML 0.30 0.17 0.03 0.00

RMW 0.01 0.00 0.00 0.00

CMA 0.97 0.97 0.35 0.00

MOM 0.65 0.39 0.01 0.00

PEAD 1.00 1.00 1.00 1.00

FIN 0.68 0.51 0.17 0.00

QMJ 1.00 1.00 1.00 1.00

BAB 0.19 0.15 0.50 0.95

MGMT 0.98 0.90 0.21 0.00

PERF 0.67 0.76 0.89 0.96

LIQ 0.89 0.57 0.77 0.97

ICR 0.97 0.93 0.94 0.97

Panel B: Posterior Probabilities of Macro Predictors

τ = 1.25 τ = 1.5 τ = 2 τ = 3

dp 0.35 0.22 0.06 0.01

dy 0.67 0.68 0.75 0.95

ep 0.35 0.40 0.75 0.84

de 0.28 0.30 0.46 0.29

svar 0.17 0.33 0.27 0.08

bm 0.02 0.00 0.04 0.06

ntis 0.14 0.15 0.21 0.96

tbl 0.10 0.03 0.06 0.90

lty 0.89 0.97 0.94 0.10

ltr 0.01 0.00 0.00 0.00

tms 0.02 0.00 0.04 0.90

dfy 0.03 0.01 0.00 0.00

infl 0.00 0.00 0.00 0.00

Panel C: Other Model Features

τ = 1.25 τ = 1.5 τ = 2 τ = 3

Conditional Model Probability 1.000 1.000 1.000 1.000

Mispricing Probability 0.641 0.686 0.579 0.057

Average T0 4,693 2,112 880 330

Average Shrinkage T0
T0+T

0.897 0.799 0.630 0.398
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Table 6: Out-of-Sample Sharpe Ratio

Panel A presents the in-sample and out-of-sample annualized Sharpe ratio for the tangency portfolio based on four bench-
mark models, i.e., CAPM, FF3, FF6, and AQR6. The columns “EST” report the in-sample Sharpe ratio computed in
the full sample (T ), as well as in the in-sample periods that correspond to half of the sample (T

2
) and two-thirds of the

sample ( 2T
3

). The columns “OOS” report the out-of-sample Sharpe ratio. We use the in-sample period returns to deter-
mine the tangency portfolio weights and apply the optimal weights to the out-of-sample returns. Panel B presents similar
statistics for the three top-ranked individual models based on the Bayesian procedure (denoted Top 1, Top 2, Top 3) and
the integrated model (denoted BMA). The investment universe consists of 14 factors as listed in Panel A of Table 2, and
we employ a prior Sharpe multiple of τ = 1.5. In the Bayesian setup, we use all data in the in-sample period to compute
posterior probabilities and predictive moments based on the integrated model. Panels C and D report similar statistics as
Panels A and B, where we further impose the Regulation T constraint. Namely, the sum of the absolute tangency portfolio
weights is set to be smaller than or equal to 2, i.e.,

∑14
i=1 |wi| ≤ 2. Panels E and F report similar statistics as Panels A

and B, where we replace the tangency portfolio with the global minimum variance portfolio.

Model
T T

2
2T
3

EST EST OOS EST OOS

Panel A: Tangency Portfolio based on Benchmark Models

CAPM 0.489 0.601 0.375 0.468 0.540

FF3 0.729 1.111 0.468 0.960 0.431

FF6 1.317 2.180 0.676 1.518 0.798

AQR6 1.679 2.803 0.954 1.829 1.152

Panel B: Tangency Portfolio based on Bayesian Models

Top 1 2.249 3.305 1.009 2.616 1.226

Top 2 2.233 3.280 1.027 2.699 1.425

Top 3 2.100 3.337 1.019 2.567 1.163

BMA 2.212 3.228 0.968 2.542 1.240

Panel C: Tangency Portfolio based on Benchmark Models with Regulation T

CAPM 0.489 0.601 0.375 0.468 0.540

FF3 0.706 1.057 0.456 0.872 0.465

FF6 1.017 1.272 0.430 1.094 0.367

AQR6 1.168 1.699 0.491 1.240 0.785

Panel D: Tangency Portfolio based on Bayesian Models with Regulation T

Top 1 1.673 2.150 0.872 1.884 1.425

Top 2 1.688 2.161 0.884 1.840 1.332

Top 3 1.251 2.223 0.860 1.581 1.013

BMA 1.621 2.137 0.617 1.772 0.979

Panel E: Global Minimum Variance Portfolio based on Benchmark Models

FF3 0.662 0.994 0.483 0.923 0.401

FF6 1.254 2.038 0.672 1.423 0.818

AQR6 1.507 2.358 0.988 1.593 0.700

Panel F: Global Minimum Variance Portfolio based on Bayesian Models

Top 1 1.897 2.850 0.998 2.502 0.924

Top 2 1.897 2.849 0.994 2.391 0.896

Top 3 1.817 2.858 1.002 2.382 0.870

BMA 1.925 2.923 1.040 2.433 1.101
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Table 7: Out-of-Sample Downside Risk

Panel A reports the out-of-sample mean, standard deviation, skewness and excess kurtosis of the monthly excess returns,
the annualized Sharpe ratio, and the maximum drawdown for the tangency portfolio based on four benchmark models,
i.e., CAPM, FF3, FF6, and AQR6. We employ the in-sample period that corresponds to two-thirds ( 2T

3
) of the sample.

We use the in-sample period returns to determine the tangency portfolio weights and apply the optimal weights to the
out-of-sample returns. Panel B presents similar statistics for the three top-ranked individual models based on the Bayesian
procedure (denoted Top 1, Top 2, Top 3) and the integrated model (denoted BMA). The investment universe consists of
14 factors as listed in Panel A of Table 2, and we employ a prior Sharpe multiple of τ = 1.5. In the Bayesian setup, we use
all data in the in-sample period to compute posterior probabilities and predictive moments based on the integrated model.
Panels C and D report similar statistics as Panels A and B, where we further impose the Regulation T constraint. Namely,
the sum of the absolute tangency portfolio weights is set to be smaller than or equal to 2, i.e.,

∑14
i=1 |wi| ≤ 2. Panels E and

F report similar statistics as Panels A and B, where we replace the tangency portfolio with the global minimum variance
portfolio.

Model Mean Std.Dev.
Sharpe

Skewness
Excess Maximum

Ratio Kurtosis Drawdown

Panel A: Tangency Portfolio based on Benchmark Models

CAPM 0.640 4.110 0.540 -0.699 2.103 51.511

FF3 0.282 2.266 0.431 -0.622 2.797 31.065

FF6 0.223 0.968 0.798 -0.258 0.721 8.778

AQR6 0.305 0.917 1.152 -0.441 2.816 6.577

Panel B: Tangency Portfolio based on Bayesian Models

Top 1 0.274 0.774 1.226 0.348 2.339 3.860

Top 2 0.338 0.821 1.425 0.396 1.251 2.487

Top 3 0.270 0.804 1.163 0.347 2.129 4.008

BMA 0.277 0.775 1.240 0.001 1.344 5.149

Panel C: Tangency Portfolio based on Benchmark Models with Regulation T

CAPM 1.281 8.219 0.540 -0.699 2.103 78.807

FF3 0.708 5.272 0.465 -0.835 3.014 63.947

FF6 0.414 3.911 0.367 -2.017 10.046 50.631

AQR6 0.989 4.361 0.785 -1.213 4.800 58.583

Panel D: Tangency Portfolio based on Bayesian Models with Regulation T

Top 1 1.543 3.749 1.425 0.022 2.121 32.254

Top 2 1.482 3.855 1.332 0.395 2.271 37.544

Top 3 1.208 4.134 1.013 -0.589 3.536 57.364

BMA 1.035 3.664 0.979 -0.518 0.928 43.743

Panel E: Global Minimum Variance Portfolio based on Benchmark Models

FF3 0.246 2.127 0.401 -0.442 2.537 26.997

FF6 0.226 0.956 0.818 0.013 0.813 5.771

AQR6 0.244 1.207 0.700 -0.376 5.156 7.491

Panel F: Global Minimum Variance Portfolio based on Bayesian Models

Top 1 0.232 0.871 0.924 0.257 4.180 4.392

Top 2 0.221 0.855 0.896 0.337 3.453 5.823

Top 3 0.205 0.818 0.870 0.289 5.217 4.977

BMA 0.240 0.756 1.101 0.155 3.607 4.988
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Table 8: Out-of-Sample Sharpe Ratio: Alternative Prior Sharpe Multiple

Panel A presents the in-sample and out-of-sample annualized Sharpe ratio of the three top-ranked individual models based
on the Bayesian procedure (denoted Top 1, Top 2, Top 3) and the integrated model (denoted BMA). The investment
universe consists of 14 factors as listed in Panel A of Table 2, and we employ a list of alternative prior Sharpe multiples
of τ = 1.25, 2 and 3. The columns “EST” report the in-sample Sharpe ratio computed in the full sample (T ), as well
as in the in-sample periods that correspond to half (T

2
) and two-thirds ( 2T

3
) of the sample. The columns “OOS” report

the out-of-sample Sharpe ratio. We use all data in the in-sample period to compute posterior probabilities and predictive
moments based on the integrated model. Panel B reports similar statistics with the Regulation T constraint; namely, the
sum of the absolute tangency portfolio weights is set to be smaller than or equal to 2, i.e.,

∑14
i=1 |wi| ≤ 2. Panel C reports

similar statistics, where we replace the tangency portfolio with the global minimum variance portfolio.

τ Model
T T

2
2T
3

EST EST OOS EST OOS

Panel A: Tangency Portfolio

τ = 1.25

Top 1 2.307 3.201 0.975 2.631 1.293

Top 2 2.159 3.247 1.013 2.611 1.277

Top 3 2.283 3.188 0.982 2.569 1.177

BMA 2.184 3.175 0.985 2.527 1.208

τ = 2

Top 1 2.124 3.370 0.961 2.771 1.550

Top 2 1.888 3.333 1.034 2.608 0.791

Top 3 1.929 3.339 0.971 2.628 1.311

BMA 2.163 3.338 0.946 2.613 1.271

τ = 3

Top 1 0.583 3.619 0.980 2.719 1.046

Top 2 0.806 3.687 0.952 2.729 1.291

Top 3 0.784 3.709 0.908 2.649 1.203

BMA 0.744 3.634 0.982 2.737 1.253

Panel B: Tangency Portfolio with Regulation T

τ = 1.25

Top 1 1.761 2.152 0.681 1.699 1.195

Top 2 1.395 2.252 0.711 1.650 1.103

Top 3 1.702 2.148 0.711 1.727 0.942

BMA 1.626 2.029 0.621 1.700 0.976

τ = 2

Top 1 1.628 2.355 0.733 1.788 1.628

Top 2 1.344 2.198 0.700 1.679 0.526

Top 3 1.309 2.309 0.912 1.720 1.452

BMA 1.569 2.392 0.652 1.841 1.018

τ = 3

Top 1 1.410 2.626 0.404 1.796 0.695

Top 2 1.407 2.604 0.455 1.839 0.933

Top 3 1.679 2.827 0.482 1.688 0.961

BMA 1.481 2.802 0.586 1.878 0.819

Panel C: Global Minimum Variance Portfolio

τ = 1.25

Top 1 1.865 2.605 1.068 2.396 0.909

Top 2 1.918 2.617 1.109 2.394 0.907

Top 3 1.911 2.606 1.066 2.153 0.961

BMA 1.927 2.902 1.062 2.424 1.121

τ = 2

Top 1 1.730 2.832 0.937 2.510 0.903

Top 2 1.737 2.837 0.973 2.392 0.876

Top 3 1.746 2.827 0.930 2.392 0.869

BMA 1.908 2.922 1.026 2.499 1.015

τ = 3

Top 1 1.734 2.949 0.963 2.359 0.901

Top 2 1.734 2.951 0.970 2.388 0.940

Top 3 1.720 2.913 0.976 2.353 0.963

BMA 1.763 2.981 1.083 2.376 0.961
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Table 9: BMA Model Variance and Sample Variance

This table presents the in-sample and out-of-sample variance for each factor. We report (i) the sample average of the
variance based on the integrated model (denoted V̄t + Ω̄t), defined as the time-series average of the diagonal elements
of the covariance matrix, i.e., Var [rt+1|D] in equation (5), and (ii) the sample variance computed from realized factors
returns (denoted OBS). The columns “EST” report the in-sample variance computed in the full sample (T ), as well as in
the in-sample periods that correspond to half of the sample (T

2
) and two-thirds of the sample ( 2T

3
). The columns “OOS”

report the out-of-sample variance. The investment universe consists of 14 factors as listed in Panel A of Table 2, and we
employ a prior Sharpe multiple of τ = 1.5.

T T
2

2T
3

EST EST OOS EST OOS

V̄t + Ω̄t OBS V̄t + Ω̄t OBS V̄t + Ω̄t OBS V̄t + Ω̄t OBS V̄t + Ω̄t OBS

MKT 19.875 19.771 18.912 18.797 19.188 20.873 21.325 21.242 21.444 16.889

SMB 8.576 8.507 6.779 6.743 6.885 10.438 9.968 9.928 10.018 5.653

HML 8.067 8.417 6.432 6.376 6.506 10.643 9.182 9.362 8.880 6.491

RMW 5.070 5.553 2.086 2.004 2.057 9.402 6.520 6.963 6.793 2.695

CMA 3.923 3.901 2.999 2.941 3.124 4.954 4.814 4.843 4.799 1.904

MOM 19.800 19.955 10.380 10.117 10.157 30.524 19.253 19.325 20.080 20.871

PEAD 3.602 3.587 2.114 2.093 2.148 5.174 3.294 3.281 3.309 3.971

FIN 15.047 15.319 8.114 8.058 8.551 23.180 18.732 18.998 19.238 7.684

QMJ 5.633 5.605 2.579 2.561 2.614 8.914 5.280 5.259 5.306 6.330

BAB 12.982 13.255 7.957 7.619 8.629 19.166 15.680 15.939 16.189 7.673

MGMT 8.056 8.021 6.854 6.788 6.993 9.370 9.765 9.725 9.817 4.290

PERF 15.932 15.961 7.725 7.594 7.759 25.047 13.247 13.366 13.466 21.297

LIQ 11.977 11.681 10.287 10.023 10.508 13.476 11.203 11.100 11.237 12.902

ICR 45.186 44.746 40.582 40.182 41.258 49.493 43.998 43.363 44.240 47.397
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Table 10: BMA Model Uncertainty

Panel A presents the in-sample and out-of-sample entropy increase, i.e., EIt in equation (30). We report the mean, the
95th percentile, the 99th percentile, and the maximum of the entropy increase. The columns “EST” report the in-sample
entropy increase computed in the full sample (T ), as well as in the in-sample periods that correspond to half of the sample
(T
2

) and two-thirds of the sample ( 2T
3

). The columns “OOS” report the out-of-sample entropy increase. The investment
universe consists of 14 factors as listed in Panel A of Table 2, and we employ a prior Sharpe multiple of τ = 1.5. Panels B
and C report the average and maximum contribution of each factor to the entropy increase, i.e., EIi,t in equation (31).

T T
2

2T
3

EST EST OOS EST OOS

Panel A: Entropy Increase

Mean 1.010 1.009 1.026 1.005 1.012

95th Pctl. 1.013 1.014 1.053 1.007 1.049

99th Pctl. 1.069 1.017 1.121 1.009 1.069

Max 1.379 1.209 1.195 1.098 1.085

Panel B: Average Contribution to the Entropy Increase

MKT 3.077 8.173 12.842 10.877 17.246

SMB 12.686 8.619 10.484 9.562 7.957

HML 3.080 11.610 13.226 5.116 7.723

RMW 2.175 4.531 4.325 5.127 4.027

CMA 3.020 3.630 4.491 4.298 5.505

MOM 7.936 8.169 3.568 5.656 3.573

PEAD 2.464 4.349 3.239 1.452 2.021

FIN 2.784 3.274 3.791 4.572 5.462

QMJ 7.961 2.826 3.517 5.513 9.170

BAB 11.505 14.687 14.761 6.568 4.663

MGMT 7.430 7.193 9.694 7.810 12.623

PERF 6.704 9.268 4.775 6.764 3.889

LIQ 21.493 3.356 4.263 11.724 5.715

ICR 7.685 10.316 7.024 14.960 10.426

Panel C: Maximum Contribution to the Entropy Increase

MKT 20.671 19.363 19.763 19.727 25.747

SMB 24.881 22.289 22.957 24.587 13.217

HML 6.503 15.252 17.011 9.172 9.592

RMW 4.890 11.541 10.632 8.138 6.339

CMA 6.112 5.690 6.813 8.290 9.562

MOM 32.882 15.881 11.341 10.937 8.715

PEAD 7.559 7.513 6.585 5.527 5.450

FIN 7.946 5.034 5.083 9.633 8.474

QMJ 21.714 6.075 5.750 10.985 12.617

BAB 25.010 29.716 30.836 14.740 13.094

MGMT 15.934 12.338 11.775 16.400 16.836

PERF 17.779 17.075 9.781 15.012 8.435

LIQ 41.740 10.512 9.023 21.592 10.389

ICR 26.268 15.651 12.681 23.430 16.664
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Figure 1: Cumulative Posterior Probabilities of Asset Pricing Models

This figure plots the cumulative posterior probabilities for the universe of candidate models in a BMA framework for
different values of τ . The candidate models, i.e., M1 to M4, are specified in Table 1. The cumulative posterior probabilities
for models in M1 to M4 are defined in equations (C.32), (C.24), (B.41), and (B.30), respectively.
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Figure 2: BMA Model Performance Over Time

This figure plots the BMA model performance over time. We employ a prior Sharpe multiple of τ = 1.5 and consider
three in-sample periods that correspond to the full sample (T ), half of the sample (T

2
), and two-thirds of the sample ( 2T

3
).

Figure 2a plots the cumulative excess returns on an initial investment of $1 for the market portfolio (MKT) and three
tangency portfolios based on the integrated model. The blue dashed lines mark the end of the in-sample periods for T

2
and

2T
3

. Figure 2b plots similar statistics for the market portfolio (MKT), tangency portfolios with and without Regulation
T constraint, and the GMVP based on the integrated model. We only plot the out-of-sample periods: one starts from
January 1998 (T

2
) and another starts from January 2004 ( 2T

3
).

(a) Cumulative Excess Returns on a $1 Investment: Full Sample

(b) Cumulative Excess Returns on a $1 Investment: Out-of-Sample
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Figure 3: Model Disagreement

This figure plots the contribution of the model disagreement component to the covariance matrix over time. We employ a
prior Sharpe multiple of τ = 1.5, and consider three in-sample periods that correspond to the full sample (T ), half of the
sample (T

2
), and two-thirds of the sample ( 2T

3
). Figure 3a plots the time series of the relative increase in entropy, i.e., EIt

in equation (30). Figure 3b plots, for each factor, the time series of the contribution to the overall entropy increase, i.e.,
EIi,t in equation (31). The blue dashed lines mark the end of the in-sample periods for T

2
and 2T

3
.

(a) Model Disagreement Over Time

(b) Factor Contribution to Model Disagreement Over Time
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A Marginal Likelihood of Predictive Regressions

The marginal likelihood derivation for predictive regressions, per equation (11), is based

on Avramov (2002), with essential modifications to account for nonlinearities in the

predictors as well as interactions. First, it is convenient to reformulate the data generating

process in equation (11) in matrix notation Y = XB + U , where X = [x0, x1, . . . , xT−1]′,

Y = [y1, y2, . . . , yT ]′, U = [ε1, . . . , εT ]′, and xt = [1, z′t]
′ if interaction terms are omitted

or xt = [1, z′t, vech(ztz
′
t)
′]′ if interaction terms are included. The set of selected predictors

differs across models, but we refrain from model-specific subscripts to keep the notation

lightweight.

We conduct Bayesian inference for the primary sample based on the joint posterior

distribution of B and Σ from the hypothetical sample equipped with a noninformative

prior. Multiplying the likelihood of the hypothetical sample with the noninformative

prior π(B,Σ) ∝ |Σ|−N+K+1
2 yields the informative prior, formulated as

π(B,Σ|D0) ∝ |Σ|−
T0+N+K+1

2 exp

(
−1

2
Tr
[
(S0 + (B −B0)′X ′0X0(B −B0)) Σ−1

])
, (A.1)

where

S0 =(Y0 −X0B0)′(Y0 −X0B0) = T0V̂y (A.2)

B0 =

 ȳ′

0

 (A.3)

(X ′0X0) =
T0

T
(X ′X) = T0xx′, (A.4)

and xx′ is the sample mean of xx′.
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Standard results imply that the priors for B and Σ can be expressed as

vec (B) |Σ, D0 ∼ fMV

(
vec (B0) ,Σ⊗ (X ′0X0)

−1
)
, (A.5)

Σ|D0 ∼ fN+K
IW (S0, T0 −m− 1) , (A.6)

where vec (·) denotes the vector formed by stacking the successive transformed rows of a

matrix, m is the number of retained predictors, MV stands for the multivariate normal

distribution, IW stands for the inverted Wishart density, and N +K denotes the degrees

of freedom of the inverted Wishart density. We refer to Zellner (1971) for further technical

details.

Combining the likelihood of the actual sample D and the priors in equations (A.5)

and (A.6) yields the posterior density

vec (B) |Σ, D ∼ N
(

vec
(
B̃
)
,Σ⊗ (X ′0X0 +X ′X)−1

)
(A.7)

Σ|D ∼ fN+K
IW

(
S̃, T ∗ −m− 1

)
, (A.8)

where T ∗ = T + T0,

B̃ =
T

T ∗
(X ′X)

−1
(T0x̄ȳ

′ +X ′Y ) , (A.9)

S̃ =T ∗
(
V̂y + ȳȳ′

)
− T

T ∗
(T0ȳx̄

′ + Y ′X) (X ′X)−1 (T0x̄ȳ
′ +X ′Y ) . (A.10)

Then, the log marginal likelihood for the predictive regression setup formulated in

equation (11) takes the form

ln [m(D|M)] = −T (N +K)

2
ln(π) +

T0 −m− 1

2
ln |T0V̂y| −

T ∗ −m− 1

2
ln |S̃|

−
N+K∑
i=1

ln

{
Γ

(
T0 −m− i

2

)}
+

N+K∑
i=1

ln

{
Γ

(
T ∗ −m− i

2

)}
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− (N +K)(m+ 1)

2
ln

(
T ∗

T0

)
, (A.11)

where Γ(φ) stands for the Gamma function evaluated at φ, and |x| is the determinant of

x.

B Conditional Asset Pricing Models

B.1 Marginal Likelihood for the Unrestricted Case

The multivariate representation of the beta pricing equations (1)-(2) is given by

R = ιTα
′
0 + Z−1α

′
1 + Fβ′0 + Ξβ′1 + UR

= WΦ + UR (B.1)

F = XAF + UF , (B.2)

where R = [r1, . . . , rT ]′, F = [f1, . . . , fT ]′, X = [ιT , Z−1], Z−1 = [z0, . . . , zT−1]′, ιT is

a T -vector of ones, Ξ = [ξ1, . . . , ξT ]′ ∈ RT×(km) is defined through ξt = (Ik ⊗ zt−1) ft,

W = [X,F,Ξ], Φ = [α0, α1, β0, β1]′, UR ∈ RT×(N+K−k) and UF ∈ RT×k are the matrices

of residuals, N is the number of test assets, K is the total number of factors, and K − k

is the number of factors that are not benchmark factors in the asset pricing specification.

These factors are added to the test assets on the left-hand side of equation (B.1). The k

remaining factors are on the right-hand side of equation (B.1) and the left-hand side of

equation (B.2). The number of retained predictors is denoted by m, and it ranges, in the

conditional setting, between one and M .

We assume that the error terms UR = [ur,1, . . . , ur,T ]′ and UF = [uf,1, . . . , uf,T ]′ condi-
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tional on the parameter space obey the normal distribution

ur,t
uf,t

 ∼ i.i.d.fMV(0,Ψ), where Ψ =

ΣRR 0

0 ΣFF

 . (B.3)

The factor and return innovations are orthogonal through equation (B.1). The un-

conditional distribution of the error terms (upon integrating out the parameter space)

essentially departs from normality. Notably, Tu and Zhou (2004) show that certainty

equivalent losses associated with ignoring fat tails are small, suggesting that the nor-

mality assumption could well characterize the stock return distribution from a decision-

making perspective. Then, based on the multivariate representation of the beta pricing

equations, the likelihood of the hypothetical sample D0 = (R0, F0, X0) can be written as

L(D0|Z0,ΣRR,ΣFF ,Φ, AF ,M) ∝

|ΣRR|−
1
2
T0 exp

{
−1

2
Tr

[
Σ−1
RR

(
R′0QW0R0 +

(
Φ− Φ̂0

)′
W ′

0W0

(
Φ− Φ̂0

))]}
×

|ΣFF |−
1
2
T0 exp

{
−1

2
Tr

[
Σ−1
FF

(
F ′0QX0F0 +

(
AF − ÂF0

)′
X ′0X0

(
AF − ÂF0

))]}
(B.4)

where

Φ̂0 =
[
0(N+K−k)×(m+1), β̂0,0(N+K−k)×km

]′
(B.5)

ÂF0 =
[

ˆ̄f,0k×m

]′
. (B.6)

Here, β̂0 = (F ′F )−1 F ′R is the slope coefficient in a zero-intercept regression of the returns

rt on the factors ft, 0i×j is a matrix of zeros with i rows and j columns, and the operator

QJ = IT − J (J ′J)−1 J ′ is defined for a matrix J with full column-rank and T rows. The

hypothetical sample is weighted against both mispricing and time variation in the alpha,
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beta, and risk premia.

Combining the likelihood of the hypothetical sample with the uninformative prior

π(ΣRR,ΣFF ,Φ, AF ) ∝ |Ψ|−
N+K+1

2 yields the informed prior, formulated as

vec (AF ) |ΣFF , D0 ∼ fMV

(
vec
(
ÂF0

)
,ΣFF ⊗ (X0

′X0)
−1
)

(B.7)

ΣFF |D0 ∼ fkIW (F ′0QX0F0, T0 +N +K − k −m− 1) (B.8)

vec (Φ) |ΣRR, D0 ∼ fMV

(
vec
(

Φ̂0

)
,ΣRR ⊗ (W ′

0W0)
−1
)

(B.9)

ΣRR|D0 ∼ fN+K−k
IW (R′0QW0R0, T0 − (k + 1)m− 1) . (B.10)

All quantities based on the hypothetical sample in equations (B.7)-(B.10) can be ex-

pressed in terms of quantities observed from the actual sample. Specifically, note that

X ′0X0 =
T0

T
(X ′X) = T0

1 z̄′

z̄ V̂z + z̄z̄′

 (B.11)

F ′0QX0F0 =
(
F0 −X0ÂF0

)′ (
F0 −X0ÂF0

)
=
(
F0 − ιT0 f̄ ′

)′ (
F0 − ιT0 f̄ ′

)
= T0V̂f (B.12)

R′0QW0R0 =
(
R0 −W0Φ̂0

)′ (
R0 −W0Φ̂0

)
=
T0

T

(
R′R− Φ̂′0W

′W Φ̂0

)
=
T0

T

(
R′R− β̂′0F ′Fβ̂0

)
. (B.13)

We next express W ′
0W0 in terms of quantities observed from the actual sample. First

note that

X ′0F0 = (X ′0X0) ÂF0 = T0

1 z̄′

z̄ V̂z + z̄z̄′


 f̄ ′

0m×k

 = T0

 f̄ ′

z̄f̄ ′

 . (B.14)

Further, we exploit the prior independence between F0 and Z0 to compute Z ′0Ξ0, F ′0Ξ0
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and Ξ′0Ξ0 as

Z ′0Ξ0 =



T0−1∑
t=0

(
z1

0,t ·
(
f ′0,t+1 ⊗ z′0,t

))
...

T0−1∑
t=0

(
zm0,t ·

(
f ′0,t+1 ⊗ z′0,t

))


= T0


f̄ ′ ⊗ z1 · z′

...

f̄ ′ ⊗ zm · z′

 = T0

(
f̄ ′ ⊗ Γ

)
(B.15)

F ′0Ξ0 =



T0∑
t=1

(
f 1

0,t

(
f ′0,t ⊗ z′0,t−1

))
...

T0∑
t=1

(
fk0,t
(
f ′0,t ⊗ z′0,t−1

))


= T0


f 1 · f ′ ⊗ z̄′

...

fk · f ′ ⊗ z̄′

 = T0 (∆⊗ z̄′) (B.16)

where zi · z′ = 1
T

T−1∑
t=0

(zit · z′t), f i · f ′ = 1
T

T∑
t=1

(f it · f ′t), Γ =


z1 · z′

...

zm · z′

, and ∆ =


f 1 · f ′

...

fk · f ′.

.

Moreover,

Ξ′0Ξ0 =

T0∑
t=1

(ft ⊗ zt−1) ·
(
f ′t ⊗ z′t−1

)
=

T0∑
t=1

(
ftf
′
t ⊗ zt−1z

′
t−1

)
=T0

(
ff ′ ⊗ zz′

)
. (B.17)

Then, it follows that

W ′
0W0 =



ι′T0ιT0 ι′T0Z0 ι′T0F0 ι′T0Ξ0

Z ′0ιT0 Z ′0Z0 Z ′0F0 Z ′0Ξ0

F ′0ιT0 F ′0Z0 F ′0F0 F ′0Ξ0

Ξ′0ιT0 Ξ′0Z0 Ξ′0F0 Ξ′0Ξ0
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= T0



1 z̄′ f̄ ′ Ξ̄′

z̄ V̂z + z̄z̄′ z̄f̄ ′ f̄ ′ ⊗ Γ

f̄ f̄ z̄′ V̂f + f̄ f̄ ′ ∆⊗ z̄′

Ξ̄ f̄ ⊗ Γ′ ∆′ ⊗ z̄
(
V̂f + f̄ f̄ ′

)
⊗
(
V̂z + z̄z̄′

)


. (B.18)

Combining the likelihood of the observed sample D = (R,F, Z) with the prior distri-

butions based on the hypothetical sample (equations (B.7)-(B.10)) yields the following

posterior distribution:

vec (AF ) |ΣFF , D ∼ fMV

(
vec
(
ÃF

)
,ΣFF ⊗

T

T ∗
(X ′X)

−1

)
(B.19)

ΣFF |D ∼ fkIW (SF , T
∗ +N +K − k −m− 1) (B.20)

vec (Φ) |ΣRR, D ∼ fMV

(
vec
(

Φ̃
)
,ΣRR ⊗ (W ′

0W0 +W ′W )
−1
)

(B.21)

ΣRR|D ∼ fN+K−k
IW (SR, T

∗ − (k + 1)m− 1) (B.22)

where

ÃF =
T

T ∗
(X ′X)

−1
(
X ′F + T0

[
f̄ , f̄ z̄′

]′)
=

1

T ∗

(
T (X ′X)

−1
X ′F + T0ÂF0

)
(B.23)

Φ̃ = (W0
′W0 +W ′W )

−1
(
W ′R +W ′

0W0Φ̂0

)
=

1

T ∗

(
T (W ′W )

−1
W ′R + T0Φ̂0

)
(B.24)

SF =T ∗
(
V̂f + f̄ f̄ ′

)
− T

T ∗
(
T0[f̄ , f̄ z̄′] + F ′X

)
(X ′X)

−1 (
T0[f̄ , f̄ z̄′]′ +X ′F

)
(B.25)

SR =R′0QW0R0 +
(
R−W Φ̃

)′ (
R−W Φ̃

)
+
(

Φ̃− Φ̂0

)′
(W ′

0W0)
(

Φ̃− Φ̂0

)
=R′0R0 +R′R− Φ̃′ (W ′

0W0 +W ′W ) Φ̃ =
T ∗

T

(
R′R− Φ̃′W ′W Φ̃

)
, (B.26)

where we express W ′
0W0 in terms of quantities observed from the actual sample,

W ′0W0

T0
= W ′W

T
and similarly,

R′0R0

T0
= R′R

T
.

To compute the marginal likelihood, we employ equation (7) and substitute the corre-
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sponding quantities given in equations (B.4)-(B.22) for the prior, likelihood, and posterior

densities. This yields

m(D|MC) = π−
1
2

(T )(N+K) ×
[

|W ′
0W0|

|W ′
0W0 +W ′W |

] 1
2

(N+K−k) [
T0

T + T0

] 1
2
k(m+1)

×[
ΓN+K−k

(
1
2

[T ∗ − (k + 1)m− 1]
)

ΓN+K−k
(

1
2

[T0 − (k + 1)m− 1]
) ] [Γk

(
1
2

[T ∗ +N +K − k −m− 1]
)

Γk
(

1
2

[T0 +N +K − k −m− 1]
) ]×[

|R′0QW0R0|
1
2

(T0−(k+1)m−1)

|SR|
1
2

(T ∗−(k+1)m−1)

][
|T0V̂f |

1
2

(T0+N+K−k−m−1)

|SF |
1
2

(T ∗+N+K−k−m−1)

]
, (B.27)

where Γp (·) is the multivariate gamma function, a generalization of the gamma function.

As W ′W is (1 +m+ k + km)× (1 +m+ k + km) matrix, we obtain

|W ′
0W0| =

(
T0

T

)(1+m+k+km)

|W ′W | (B.28)

|W ′
0W0 +W ′W | =

(
T ∗

T

)(1+m+k+km)

|W ′W |. (B.29)

Therefore, the marginal likelihood from equation (B.27) is

m(D|MC) = π−
1
2
T (N+K) ×

[
T0

T ∗

] 1
2

(N+K−k)(T0+k)+ 1
2
k(m+1)

×
[
T

T ∗

] 1
2

(N+K−k)T

×[
ΓN+K−k

(
1
2

[T ∗ − (k + 1)m− 1]
)

ΓN+K−k
(

1
2

[T0 − (k + 1)m− 1]
) ] [Γk

(
1
2

[T ∗ +N +K − k −m− 1]
)

Γk
(

1
2

[T0 +N +K − k −m− 1]
) ]×[

|R′R−R′F (F ′F )−1 F ′R| 12 (T0−(k+1)m−1)

|R′R− Φ̃′W ′W Φ̃| 12 (T ∗−(k+1)m−1)

][
|T0V̂f |

1
2

(T0+N+K−k−m−1)

|SF |
1
2

(T ∗+N+K−k−m−1)

]
. (B.30)

B.2 Marginal Likelihood for the Restricted Case

The derivation of the marginal likelihood when restricting the parameters α0 and α1 to

zero is closely related to the unrestricted case. The likelihood of the hypothetical sample
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D0 = (R0, F0, X0) can be rewritten as

L(D0|Z0,ΣRR,ΣFF ,Φ
R, AF ,MR) ∝

|ΣRR|−
1
2
T0 exp

{
−1

2
Tr

[
Σ−1
RR

(
R′0QWR

0
R0 +

(
ΦR − Φ̂R

0

)′
WR

0

′
WR

0

(
ΦR − Φ̂R

0

))]}
×

|ΣFF |−
1
2
T0 exp

{
−1

2
Tr

[
Σ−1
FF

(
F ′0QX0F0 +

(
AF − ÂF0

)′
X ′0X0

(
AF − ÂF0

))]}
(B.31)

where

Φ̂R
0 =

[
β̂0,0(N+K−k)×km

]′
(B.32)

WR
0 = [F0,Ξ0] . (B.33)

Then, the prior distributions for the parameters ΣFF and AF remain the same as in

equations (B.7) and (B.8). The priors for ΣRR and ΦR are given by

vec
(
ΦR
)
|ΣRR, D0 ∼ fMV

(
vec
(

Φ̂R
0

)
,ΣRR ⊗

(
WR

0

′
WR

0

)−1
)

(B.34)

ΣRR|D0 ∼ fN+K−k
IW

(
R′0QWR

0
R0, T0 − km

)
. (B.35)

Equivalent to equation (B.18), one can replace all quantities based on the hypothetical

sample in terms of moments of the observed data

WR
0

′
WR

0 = T0

V̂f + f̄ f̄ ′ ∆⊗ z̄′

∆′ ⊗ z̄ V̂Ξ + Ξ̄Ξ̄′

 . (B.36)

Combining the likelihood of the observed sample D = (R,F, Z) with the prior distribu-

tions based on the hypothetical sample yields the following posterior distributions for ΦR
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and ΣRR

vec
(
ΦR
)
|ΣRR, D ∝ fMV

(
vec
(

Φ̃R
)
,ΣRR ⊗

(
WR

0

′
WR

0 +WR′WR
)−1
)

(B.37)

ΣRR|D ∝ fN+K−k
IW

(
S̃R, T

∗ − km
)

(B.38)

where

Φ̃R =
(
WR

0

′
WR

0 +WR′WR
)−1 (

WR′R +WR
0

′
WR

0 Φ̂R
0

)
=

1

T ∗

(
T
(
WR′WR

)−1

WR′R + T0Φ̂R
0

)
(B.39)

S̃R =R′0QWR
0
R0 +

(
R−WRΦ̃R

)′ (
R−WRΦ̃R

)
+
(

Φ̃R − Φ̂R
0

)′ (
WR

0

′
WR

0

)(
Φ̃R − Φ̂R

0

)
=R′0R0 +R′R− Φ̃R′

(
WR

0

′
WR

0 +WR′WR
)

Φ̃R =
T ∗

T

(
R′R− Φ̃R′WR′WRΦ̃R

)
.

(B.40)

Thus, the marginal likelihood is

m(D|MR
C) = π−

1
2
T (N+K) ×

[
T0

T ∗

] 1
2

(N+K−k)(k+km)+ 1
2
k(m+1)

×[
ΓN+K−k

(
1
2

[T ∗ − km]
)

ΓN+K−k
(

1
2

[T0 − km]
) ] [Γk

(
1
2

[T ∗ +N +K − k −m− 1]
)

Γk
(

1
2

[T0 +N +K − k −m− 1]
) ]×[

|R′0QWR
0
R0|

1
2

(T0−km)

|S̃R|
1
2

(T ∗−km)

][
|T0V̂f |

1
2

(T0+N+K−k−m−1)

|SF |
1
2

(T ∗+N+K−k−m−1)

]

= π−
1
2
T (N+K) ×

[
T0

T ∗

] 1
2

(N+K−k)(T0+k)+ 1
2
k(m+1)

×
[
T

T ∗

] 1
2

(N+K−k)T

×[
ΓN+K−k

(
1
2

[T ∗ − km]
)

ΓN+K−k
(

1
2

[T0 − km]
) ] [Γk

(
1
2

[T ∗ +N +K − k −m− 1]
)

Γk
(

1
2

[T0 +N +K − k −m− 1]
) ]×[

|R′R−R′F (F ′F )−1 F ′R| 12 (T0−km)

|R′R− Φ̃R′WR′WRΦ̃R| 12 (T ∗−km)

][
|T0V̂f |

1
2

(T0+N+K−k−m−1)

|SF |
1
2

(T ∗+N+K−k−m−1)

]
. (B.41)
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C Unconditional Asset Pricing Models

C.1 Marginal Likelihood for the Unrestricted Case

Starting from the multivariate representation of the beta pricing equations (1)-(2), in the

case where α, β and the risk premiums are time invariant, we obtain:

R = ιTα
′ + Fβ′ + UR

= WΦ + UR (C.1)

F = ιTAF + UF (C.2)

where W = [ιT , F ], Φ = [α, β]′, UR ∈ RT×(N+K−k) and UF ∈ RT×k are the matrices of

residuals. We assume that the error terms UR and UF conditional on the parameter space

obey the normal distribution

ur,t
uf,t

 ∼ i.i.d.fMV(0,Ψ), where Ψ =

ΣRR 0

0 ΣFF

 . (C.3)

Note that the residuals UR and UF in equations (C.1) and (C.2) and the corresponding

covariance matrices ΣRR and ΣFF in equation (C.3) are different from their counterparts

in appendix B. To ease notation, we leave these quantities unchanged.

Based on the multivariate representation of the beta pricing equations, the likelihood

of the hypothetical sample D0 = (R0, F0), denoted by the subscript 0, can be written as

L(D0|ΣRR,ΣFF ,Φ, AF ,M) ∝

|ΣRR|−
1
2
T0 exp

{
−1

2
Tr

[
Σ−1
RR

(
R′0QW0R0 +

(
Φ− Φ̂0

)′
W ′

0W0

(
Φ− Φ̂0

))]}
×

|ΣFF |−
1
2
T0 exp

{
−1

2
Tr

[
Σ−1
FF

(
F ′0QιT0

F0 +
(
AF − ÂF

)′
T0

(
AF − ÂF

))]}
(C.4)
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where

Φ̂0 =
[
0(N+K−k)×1, β̂0

]′
(C.5)

ÂF0 = ˆ̄f ′. (C.6)

Note that the hypothetical sample is exclusively weighted against mispricing.

Combining the likelihood of the hypothetical sample with the uninformative prior

π(ΣRR,ΣFF ,Φ, AF ) ∝ |Ψ|−
N+K+1

2 , the prior distributions for the parameters ΣRR,ΣFF ,Φ,

and AF are given by

vec (AF ) |ΣFF , D0 ∼ fMV

(
vec
(
ÂF0

)
,

1

T0

ΣFF

)
(C.7)

ΣFF |D0 ∼ fkIW
(
F ′0QιT0

F0, T0 +N +K − k − 1
)

(C.8)

vec (Φ) |ΣRR, D0 ∼ fMV

(
vec
(

Φ̂0

)
,ΣRR ⊗ (W ′

0W0)
−1
)

(C.9)

ΣRR|D0 ∼ fN+K−k
IW (R′0QW0R0, T0 − 1) . (C.10)

All quantities based on the hypothetical sample in equations (C.7)-(C.10) can be

expressed in terms of quantities observed from the actual sample. Specifically, note that

F ′0QιT0
F0 =

(
F0 − ιT0ÂF0

)′ (
F0 − ιT0ÂF0

)
=
(
F0 − ιT0 f̄ ′

)′ (
F0 − ιT0 f̄ ′

)
= T0V̂f (C.11)

R′0QW0R0 =
(
R0 −W0Φ̂0

)′ (
R0 −W0Φ̂0

)
=
T0

T

(
R′R− Φ̂′0W

′W Φ̂0

)
=
T0

T

(
R′R− β̂′0F ′Fβ̂0

)
, (C.12)

where we express W ′
0W0 in terms of quantities observed from the actual sample,

W ′0W0

T0
=

W ′W
T

, and similarly,
R′0R0

T0
= R′R

T
.

Then, combining the likelihood of the observed sample D = (R,F ) with the prior dis-
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tributions based on the hypothetical sample (equations (C.7)-(C.10)) yields the following

posterior distribution:

vec (AF ) |ΣFF , D ∼ fMV

(
vec
(
ÃF

)
,

1

T ∗
ΣFF

)
(C.13)

ΣFF |D ∼ fkIW (SF , T
∗ +N +K − k − 1) (C.14)

vec (Φ) |ΣRR, D ∼ fMV

(
vec
(

Φ̃
)
,ΣRR ⊗ (W ′

0W0 +W ′W )
−1
)

(C.15)

ΣRR|D ∼ fN+K−k
IW (SR, T

∗ − 1) (C.16)

where T ∗ = T0 + T ,

ÃF =f̄ ′ (C.17)

Φ̃ = (W0
′W0 +W ′W )

−1
(
W ′R +W ′

0W0Φ̂0

)
=

1

T ∗

(
T (W ′W )

−1
W ′R + T0Φ̂0

)
(C.18)

SF =T ∗V̂f (C.19)

SR =R′0QW0R0 +
(
R−W Φ̃

)′ (
R−W Φ̃

)
+
(

Φ̃− Φ̂0

)′
(W ′

0W0)
(

Φ̃− Φ̂0

)
=R′0R0 +R′R− Φ̃′ (W ′

0W0 +W ′W ) Φ̃ =
T ∗

T

(
R′R− Φ̃′W ′W Φ̃

)
. (C.20)

To compute the marginal likelihood, we employ equation (7) and substitute the corre-

sponding quantities given in equations (C.4)-(C.16) for the prior, likelihood, and posterior

densities. This yields

m(D|MU) = π−
1
2

(T )(N+K) ×
[

|W ′
0W0|

|W ′
0W0 +W ′W |

] 1
2

(N+K−k) [
T0

T + T0

] 1
2
k

×[
ΓN+K−k

(
1
2

[T ∗ − 1]
)

ΓN+K−k
(

1
2

[T0 − 1]
) ] [Γk

(
1
2

[T ∗ +N +K − k − 1]
)

Γk
(

1
2

[T0 +N +K − k − 1]
) ]×[

|R′0QW0R0|
1
2

(T0−1)

|SR|
1
2

(T ∗−1)

][
|T0V̂f |

1
2

(T0+N−1)

|SF |
1
2

(T ∗+N−1)

]
. (C.21)
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As W ′W is (1 + k)× (1 + k) matrix, we obtain

|W ′
0W0| =

(
T0

T

)(1+k)

|W ′W | (C.22)

|W ′
0W0 +W ′W | =

(
T ∗

T

)(1+k)

|W ′W |. (C.23)

Thus, the marginal likelihood from equation (C.21) is

m(D|MU) = π−
1
2
T (N+K) ×

[
T0

T ∗

] 1
2

(N+K−k)(T0+k)+ 1
2
k

×
[
T

T ∗

] 1
2

(N+K−k)T

×[
ΓN+K−k

(
1
2

[T ∗ − 1]
)

ΓN+K−k
(

1
2

[T0 − 1]
) ] [Γk

(
1
2

[T ∗ +N +K − k − 1]
)

Γk
(

1
2

[T0 +N +K − k − 1]
) ]×[

|R′R−R′F (F ′F )−1 F ′R| 12 (T0−1)

|R′R− Φ̃′W ′W Φ̃| 12 (T ∗−1)

][
|T0V̂f |

1
2

(T0+N−1)

|T ∗V̂f |
1
2

(T ∗+N−1)

]
. (C.24)

Note that for the marginal likelihood for the unconditional and unrestricted case,

equation (C.24) is equal to the conditional unrestricted case in equation (B.30) when the

number of predictors m is zero.

C.2 Marginal Likelihood for the Restricted Case

The derivation of the marginal likelihood when restricting α to zero is closely related to

the unrestricted case. The likelihood of the hypothetical sample D0 = (R0, F0) can be

rewritten as

L(D0|ΣRR,ΣFF ,Φ
R, AF ,MR) ∝

|ΣRR|−
1
2
T0 exp

{
−1

2
Tr

[
Σ−1
RR

(
R′0QWR

0
R0 +

(
ΦR − Φ̂R

0

)′
WR

0

′
WR

0

(
ΦR − Φ̂R

0

))]}
×

|ΣFF |−
1
2
T0 exp

{
−1

2
Tr

[
Σ−1
FF

(
F ′0QιT0

F0 +
(
AF − ÂF

)′
T0

(
AF − ÂF

))]}
(C.25)
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where Φ̂R
0 = β̂0 and WR

0 = F0.

The prior distributions for the parameters ΣFF and AF remain the same as in equa-

tions (C.7) and (C.8). The priors for ΣRR and ΦR are given by

vec
(
ΦR
)
|ΣRR, D0 ∼ fMV

(
vec
(

Φ̂R
0

)
,ΣRR ⊗

(
WR

0

′
WR

0

)−1
)

(C.26)

ΣRR|D0 ∼ fN+K−k
IW

(
R′0QWR

0
R0, T0

)
. (C.27)

Combining the likelihood of the observed sample D = (R,F ) with the prior distributions

based on the hypothetical sample yields the following posterior distributions for ΦR and

ΣRR:

vec
(
ΦR
)
|ΣRR, D ∝ fMV

(
vec
(

Φ̃R
)
,ΣRR ⊗

(
WR

0

′
WR

0 +WR′WR
)−1
)

(C.28)

ΣRR|D ∝ fN+K−k
IW

(
S̃R, T

∗
)

(C.29)

where

Φ̃R =
(
WR

0

′
WR

0 +WR′WR
)−1 (

WR′R +WR
0

′
WR

0 Φ̂R
0

)
= Φ̂R

0 = β̂0 (C.30)

S̃R =R′0QWR
0
R0 +

(
R−WRΦ̃R

)′ (
R−WRΦ̃R

)
+
(

Φ̃R − Φ̂R
0

)′ (
WR

0

′
WR

0

)(
Φ̃R − Φ̂R

0

)
=
T ∗

T0

R′0QWR
0
R0. (C.31)

The marginal likelihood takes the form

m(D|MR
U) = π−

1
2
T (N+K) ×

[
T0

T ∗

] 1
2

(N+K−k)k+ 1
2
k

×[
ΓN+K−k

(
1
2
T ∗
)

ΓN+K−k
(

1
2
T0

) ] [Γk
(

1
2

[T ∗ +N +K − k − 1]
)

Γk
(

1
2

[T0 +N +K − k − 1]
) ]×[

|R′0QWR
0
R0|

1
2
T0

|S̃R|
1
2
T ∗

][
|T0V̂f |

1
2

(T0+N+K−k−1)

|SF |
1
2

(T ∗+N+K−k−1)

]
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= π−
1
2
T (N+K) ×

[
T

T ∗

] 1
2

(N+K−k)(T0+k)+ 1
2
k

×
[
T0

T ∗

] 1
2

(N+K−k)T

×[
ΓN+K−k

(
1
2
T ∗
)

ΓN+K−k
(

1
2
T0

) ] [Γk
(

1
2

[T ∗ +N +K − k − 1]
)

Γk
(

1
2

[T0 +N +K − k − 1]
) ]×[

|R′R−R′F (F ′F )−1 F ′R| 12T0

|R′R− Φ̃R′WR′WRΦ̃R| 12T ∗

][
|T0V̂f |

1
2

(T0+N+K−k−1)

|SF |
1
2

(T ∗+N+K−k−1)

]
. (C.32)

Note that for the marginal likelihood for the unconditional and restricted case, equation

(C.32) is equal to the conditional and restricted case in equation (B.41) when the number

of predictors m is zero.

D Summary of the Marginal Likelihood Calculations

The general formula for calculating the marginal likelihood is given by

m(D|M) = π−
1
2

(T )(N+K) ×
[
T0

T ∗

]QR
2
[
T0

T ∗

]QF
2

×[
ΓN+K−k

(
1
2

[T ∗ + νR]
)

ΓN+K−k
(

1
2

[T0 + νR]
) ] [Γk

(
1
2

[T ∗ + νF ]
)

Γk
(

1
2

[T0 + νF ]
) ]×[

|R′0QW0R0|
1
2

(T0+νR)

|SR|
1
2

(T ∗+νR)

][
|T0V̂f |

1
2

(T0+νF )

|SF |
1
2

(T ∗+νF )

]
. (D.1)

The parameters QR, QF , νR, and νF are determined based on the model specifications

in Panel A of Table 1. The parameter values for each model are specified in Panel B of

Table 1. For models M1 −M2, we obtain

SF = T ∗V̂f (D.2)

and for models M3 −M4

SF = T ∗
(
V̂f + f̄ f̄ ′

)
− T

T ∗
(
T0[f̄ , f̄ z̄′] + F ′X

)
(X ′X)

−1 (
T0[f̄ , f̄ z̄′]′ +X ′F

)
. (D.3)
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For all models

R′0QW0R0 =
T0

T

(
R′R− β̂′0F ′Fβ̂0

)
(D.4)

SR =
T ∗

T

(
R′R− Φ̃′W ′W Φ̃

)
, (D.5)

where R,F, SR, SF and V̂f vary according to the exact model specification and depend

on the subgroup of the included/excluded factors and predictors.

E Invariance of the Marginal Likelihood under Lin-

ear Transformation of the Predictors

In this section, we show that given the following data generating process

rt+1 = β0ft+1 + β1ztft+1 + ur,t+1, (E.1)

the marginal likelihood given in equation (D.1) is invariant under a linear transformation

of zt and, in particular, standardization. To show this, we prove in the following that a

linear transformation of zt does not change SR and SF in equation (D.1).

We start with the term SR. Without loss of generality and for ease of notation we

assume that zt and ft+1 in equation (E.1) are scalars. We rewrite equation (E.1) in matrix

notation

R = Fβ′0 + Ξβ′1 + UR

= WΦ + UR (E.2)

where R = [r1, . . . , rT ]′ ∈ RT×N , F = [f1, . . . , fT ]′ ∈ RT , Ξ = [ξ1, . . . , ξT ]′ ∈ RT is defined

through ξt = zt−1ft, W = [F,Ξ], and Φ = [β0, β1]′. UR = [ur,1, . . . , ur,T ]′ ∈ RT×N is the
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matrix of residuals. The covariance matrix of the residuals is

SR = R′
(
IT −W (W ′W )

−1
W ′
)
R, (E.3)

where

(W ′W )
−1

=
1

T
(
f̄ 2ξ̄2 − fξ2

)
 ξ̄2 −fξ

−fξ f̄ 2

 . (E.4)

We have

SR = R′
(
I −W (W ′W )

−1
W ′
)
R,

= R′

I − 1

T
(
f̄ 2ξ̄2 − fξ2

) [F Ξ

] ξ̄2 −fξ

−fξ f̄ 2


F ′

Ξ′


R,

= R′

I − [ξ̄2F ′F − 2fξΞF ′ + f̄ 2ΞΞ′
]

T
(
f̄ 2ξ̄2 − fξ2

)
R (E.5)

To set the stage, we start with a shift in zt. In particular, let z̃t = zt − a, where a is a

constant. Then

ξ̃t = z̃t−1ft = ξ − af (E.6)

¯̃ξ = ξ̄ − af̄ (E.7)

f ξ̃ = fξ − af̄ 2 (E.8)

ξ̃2 = ξ̄2 − 2afξ + a2f̄ 2. (E.9)
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For the transformed system, it follows that

S̃R = R′

I −
[
ξ̃2F ′F − 2f ξ̃Ξ̃F ′ + f̄ 2Ξ̃Ξ̃′

]
T

(
f̄ 2ξ̃2 − f ξ̃

2
)

R, (E.10)

where Ξ̃ = Ξ− aF . Substituting equations (E.7), (E.8), and (E.9) into equation (E.10),

we obtain

S̃R = R′

I − [(ξ̄2 − 2afξ + a2f̄ 2
)
F ′F − 2

(
fξ − af̄ 2

)
(Ξ− aF )F ′ + f̄ 2 (Ξ− aF ) (Ξ′ − aF ′)

]
T
(
f̄ 2
(
ξ̄2 − 2afξ + a2f̄ 2

)
−
(
fξ − af̄ 2

)2
)

R.

(E.11)

After some algebra and the cancellation of common terms, equation (E.11) equals equa-

tion (E.5).

Second, consider a scale transformation of zt, namely z̃t = czt where c is a scalar. The

coefficients β1 in equation (E.1) change to β̃1 = 1
c
β1 and the covariance matrix of the

residuals, SR remains unchanged. This completes the proof for SR.

The proof for SF boils down from the above proof for SR. It is a reduction of the data

generating process in equation (E.1) that is achieved by setting ft ≡ 1 and changing the

notation rt to ft. This completes the proof that a linear transformation of the predictors

zt has no effect on the marginal likelihood in equation (D.1).

F Derivation of T0

To address the choice of T0, we establish an exact link between the variance of mispricing

and T0. This link has different forms depending on the time-varying nature of α and

β. We distinguish between two scenarios: (i) both α and β are constant, namely both

α1 = 0 and β1 = 0 in equation (3), and (ii) both α and β are time varying. Given the
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distribution of Φ in the hypothetical sample (equation (B.9)), one needs to invert the full

matrix (W ′
0W0) given in equation (B.18) for the second scenario and a submatrix of for

the first scenario. In the following, we provide the derivations for the two scenarios.

F.1 α and β are Constant

When α = α0 and β = β0, the matrix W ′
0W0 takes the form

W ′
0W0 = T0

1 f̄ ′

f̄ V̂f + f̄ f̄ ′

 (F.1)

and

(W ′
0W0)−1 =

1

T0

1 + f̄ ′V̂ −1
f f̄ −f̄ ′V̂ −1

f

−V̂ −1
f f̄ V̂ −1

f

 (F.2)

Therefore,

Var(α|ΣRR, D0) = Var (α0|ΣRR, D0)

=
ΣRR

T0

(
1 + f̄ ′V̂ −1

f f̄
)

=
ΣRR

T0

(
1 + SR2

max

)
, (F.3)

where SRmax is the Sharpe ratio of the tangency portfolio constructed by the factors.

Equating the variance of α in the hypothetical sample (equation (F.3)) with the prior’s

variance in equation (20) with the formulation of η from equation (23), we obtain

T0 =
(N +K − k) (1 + SR2

max)

(τ 2 − 1)SR2(Mkt)
, (F.4)

where N is the number of test assets, K − k is the number of redundant factors and
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SR2(Mkt) is the squared Sharpe ratio of the market.

This exact relation assigns our prior specification the mispricing uncertainty interpre-

tation. This prior specification is economically sound. In particular, when more factors

are included in an asset pricing specification, the admissible squared Sharpe ratio es-

sentially increases. Thus, the prior is more strongly weighted against mispricing and

thereby tames the squared Sharpe ratio (based on the formulation in equation (21)). On

the other hand, as τ increases, we allow for more arbitrage opportunities that translate

into achieving a higher Sharpe ratio or a lower hypothetical sample.

F.2 α and β are Time Varying

When α and β are both time varying, we invert the matrix (W ′
0W0) given in equation

(B.18). We partition the matrix (W ′
0W0)−1 into four blocks,

(W ′
0W0)−1 =

1

T0

B11 B12

B21 B22

 (F.5)

where B11 is a (1 + m) × (1 + m) matrix, B21 is a (1 + m) × (k + km), B12 = B′21 and

B22 is a (k + km)× (k + km) matrix. Specifically,

B11 =

1 + z̄′V̂ −1
z z̄ + f̄ ′V̂ −1

f f̄ + z̄′V̂ −1
z z̄ × f̄ ′V̂ −1

f f̄ −z̄′V̂ −1
z × (1 + f̄ ′V̂ −1

f f̄)

−V̂ −1
z z̄ × (1 + f̄ ′V̂ −1

f f̄) V̂ −1
z × (1 + f̄ ′V̂ −1

f f̄),

 (F.6)

B21 = −

(1 + z̄′V̂ −1
z z̄)× V̂ −1

f f̄ −V̂ −1
f f̄ ⊗ z̄′V̂ −1

z

−V̂ −1
f f̄ ⊗ V̂ −1

z z̄ V̂ −1
f f̄ ⊗ V̂ −1

z

 (F.7)
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B22 =

V̂ −1
f × (1 + z̄′V̂ −1

z z̄) −V̂ −1
f ⊗ z̄′V̂ −1

z

−V̂ −1
f ⊗ V̂ −1

z z̄ V̂ −1
f ⊗ V −1

z

 . (F.8)

If follows that the unconditional variance of total mispricing (sum of fixed and time

varying) is then equal to

Var(α|ΣRR, D0) = Var (α0 + α′1z|ΣRR, D0)

=
ΣRR

T0

Tr

B11

1 z̄′

z̄ V̂z + z̄z̄′




=
ΣRR

T0

Tr


1 + f̄ ′V̂ −1

f f̄ ...

... Imxm

(
1 + f̄ ′V̂ −1

f f̄
)



=
ΣRR

T0

(
1 + f̄ ′V̂ −1

f f̄ +m(1 + f̄ ′V̂ −1
f f̄)

)
=

ΣRR

T0

(
1 + SR2

max +m(1 + SR2
max)

)
, (F.9)

where Tr stands for the trace operator and SRmax is the Sharpe ratio of the tangency

portfolio constructed by the factors and m is the number of predictors in the model.

Equating the unconditional variance of α in the hypothetical sample (equation (F.9))

with the prior’s variance in equation (20) and with the formulation of η from equation

(23), we obtain

T0 =
(N +K − k) (1 + SR2

max +m(1 + SR2
max))

(τ 2 − 1)SR2(Mkt)
, (F.10)

where N is the number of test assets, K − k is the number of redundant factors and

SR2(Mkt) is the squared Sharpe ratio of the market. This exact relation assigns our

prior specification the mispricing uncertainty interpretation.
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G Bayesian Predictive Moments

Starting from equation (2) and denoting the posterior means of the parameters θ with θ̃,

the mean and variance of the predicted factor returns for model Ml are

E [ft+1|Dt,Ml] = α̃l,f + ãl,F zt = f̂l,t+1, (G.1)

Var [ft+1|Dt,Ml] = [Ik ⊗ x′t]
[
Σ̃FF ⊗

t

t∗
(X ′X)

−1

]
[Ik ⊗ x′t]

′
+ Σ̃FF

=
1

t∗
[Ik ⊗ x′t]

Σ̃FF ⊗

1 + z̄′V̂ −1
z z̄ −z̄′V̂ −1

z

−V̂ −1
z z̄ V̂ −1

z


 [Ik ⊗ xt] + Σ̃FF

=
1

t∗
Σ̃FF ⊗ x′t

1 + z̄′V̂ −1
z z̄ −z̄′V̂ −1

z

−V̂ −1
z z̄ V̂ −1

z

xt + Σ̃FF

= Σ̃FF

1 +

(
1 + (z̄ − zt)′ V̂ −1

z (z̄ − zt)
)

t∗


= Σ̃FF (1 + δt,t∗) , (G.2)

where xt = [1, z′t]
′, t is the sample size, t0 is the hypothetical sample size corresponding

to the sample t, t∗ = t + t0, δt,t∗ =
(1+(z̄−zt)′V̂ −1

z (z̄−zt))
t∗

, Σ̃FF = SF

t∗+N+K−2k−m−2
and the

matrix SF is defined in equation (B.25).

From equation (3), the mean and variance of the predicted future returns for the test

assets for model Ml are

E [rt+1|Dt,Ml] = α̃l,0 + α̃l,1zt +
(
β̃l,0 + β̃l,1(Ik ⊗ zt)

)
(α̃l,f + ãl,F zt) , (G.3)

Var [rt+1|Dt,Ml] =
[
IN+K−k ⊗ ŵ′t+1

] [
Σ̃RR ⊗

t

t∗
(W ′W )

−1

] [
IN+K−k ⊗ ŵ′t+1

]′
+ (1 + δt,t∗)

(
β̃l,0 + β̃l,1(Ik ⊗ zt)

)
Σ̃FF

(
β̃l,0 + β̃l,1(Ik ⊗ zt)

)′
+ Σ̃RR
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= Σ̃RR

(
1 +

t

t∗
ŵ′t+1 (W ′W )

−1
ŵt+1

)
+ (1 + δt,t∗)

(
β̃l,0 + β̃l,1(Ik ⊗ zt)

)
Σ̃FF

(
β̃l,0 + β̃l,1(Ik ⊗ zt)

)′
, (G.4)

where ŵt+1 =
[
1, z′t, f̂

′
t+1, f̂

′
t+1 ⊗ z′t

]
, Σ̃RR = S̃R

t∗−(k+1)m−N−K+k−2
and the matrix S̃R is

defined in equation (B.26).

In the restricted setup, both α0 = 0 and α1 = 0 in equation (3). The mean and

variance of the predicted future returns for the test assets for model Ml are

E [rt+1|Dt,Ml] =
(
β̃l,0 + β̃l,1(Ik ⊗ zt)

)
(α̃l,f + ãl,F zt) , (G.5)

Var [rt+1|Dt,Ml] =
[
IN+K−k ⊗ ŵR′t+1

] [
Σ̃RR ⊗

t

t∗
(W ′W )

−1

] [
IN+K−k ⊗ ŵR′t+1

]′
+ (1 + δt,t∗)

(
β̃l,0 + β̃l,1(Ik ⊗ zt)

)
Σ̃FF

(
β̃l,0 + β̃l,1(Ik ⊗ zt)

)′
+ Σ̃RR

= Σ̃RR

(
1 +

t

t∗
ŵR′t+1

(
WR′WR

)−1

ŵR′t+1

)
+ (1 + δt,t∗)

(
β̃l,0 + β̃l,1(Ik ⊗ zt)

)
Σ̃FF

(
β̃l,0 + β̃l,1(Ik ⊗ zt)

)′
, (G.6)

where ŵRt+1 =
[
f̂ ′t+1, f̂

′
t+1 ⊗ z′t

]′
, Σ̃RR = S̃R

t∗−km−N−K+k−1
and the matrix S̃R is defined in

equation (B.40).
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