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Asset Pricing In a World of Imperfect Foresight

Abstract

We consider a canonical asset pricing model, where agents with quadratic prefer-

ences are allowed to re-trade a limited set of securities over multiple periods, after

which these securities expire, and agents consume their liquidation values. A key

assumption in this model is that agents have perfect foresight: for all future contingen-

cies, they correctly foresee the corresponding equilibrium prices. We show that, under

myopia, prices generically are as if agents had perfect foresight. Yet their choices are

wrong, because of neglected re-trading opportunities. In an experiment, we find both

prices and choices to be consistent with myopia.

JEL classification: D51, D84, G12, G14
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I. INTRODUCTION

The canonical model for dynamic asset pricing is one where agents are allowed to re-trade

a limited set of securities for a number of periods, after which these securities expire and

agents consume their liquidation values. Because of the possibility to re-trade, agents can

attain significantly better final allocations (allocations that entail higher utility) than if

they had only been allowed to trade once. Effectively, with the right number of securities,

agents can generically trade to final allocations that are as good as if they had been able to

trade far more securities.

In technical terms, re-trade in a few crucial securities makes the market dynamically

complete, meaning that it allows agents to reach the Pareto optimal allocations of a complete

market (Duffie and Huang, 1985). The principles behind re-trade are well understood: they

are underlying, e.g., the Black-Scholes-Merton option pricing model (Black and Scholes,

1973; Merton, 1973b) and the Ho-Lee/Heath-Jarrow-Morton term structure models (Ho

and Lee, 1986; Heath et al., 1992), and are widely used in practice.

The power of dynamic completeness comes with an important caveat, though. Nothing

less but perfect foresight is required to reach Pareto optimality through continuous re-trading

of a limited set of securities. Perfect foresight is the ability to correctly foresee the right

(equilibrium) prices for every possible future contingency.

The requirement is not innocuous: it is hard to imagine how, without substantial

repetition in a stationary environment, agents can acquire perfect foresight. Knowledge
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of economic constraints generally does not constrain prices enough to deduce (“educe”)

the right prices (Guesnerie, 1992). It is therefore interesting to investigate what happens

before agents acquire perfect foresight (if ever) and how potential deviations therefrom

impact prices and allocations in equilibrium, which is the aim of this paper.
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(b) Perfect Foresight in the Modigliani-Miller Model

Figure 1: Examples of Perfect Foresight in Seminal Finance Theories

Yet the requirement of perfect foresight is often not made explicit. Even advanced

textbooks in asset pricing discuss the requirement only in “notes” to chapters. As an

See the end-of-chapter discussions in standard textbooks of asset pricing, such as Duffie (1988), Chapter
16; Magill and Quinzii (2002), Chapter 2; or LeRoy and Werner (2014), Chapter 21.
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example, consider the discrete version of the seminal Black-Scholes-Merton model, i.e.,

the Cox et al. (1979) binomial option pricing framework. For a simple two-period model,

Figure 1 (top) displays the usual binomial lattice on which the price of the underlying

stock (S) is assumed to “live.” The arbitrage-free option price obtains even if agents do

not know the chances of the up or down ticks. However, they have to know the exact size

of the multiplicative up (u) and down (d) movements, i.e., they have to know the price

level in each node. Moreover, if one thinks about the problem in general rather than partial

equilibrium, imperfect foresight about possible price levels cannot be sufficiently addressed

by “simply” adding parameter uncertainty.

Figure 1 (bottom) displays a timeline of infinite firm profits as underlying the Modigliani-

Miller (MM) result that the firm value (V ) does not depend on its capital structure

(Modigliani and Miller, 1958). Specifically, the MM irrelevance proposition relies on

an absence of arbitrage argument. However, since arbitrage opportunities are delicate

to define for infinite horizons,† the result effectively requires one to un-wind positions

at some finite point in the future, instead of counting on converging returns (1/TΣT
t X t)

across “homogeneous” firms. Hence, the argument only works if this future value is suffi-

ciently close to its arbitrage-free prediction, whose determination requires perfect foresight.

Furthermore, under realistic assumptions, there is considerable uncertainty about future

arbitrage-free prices even within finite horizons (Long et al., 1990; Shleifer and Vishny,

1997).

†For an infinite horizon, multiple arbitrage-free prices can exist (Delbaen and Schachermayer, 1994).
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To preclude a common misconception, a crucial distinction is helpful here. The term

“perfect foresight” is easily mis-interpreted. It does not mean that agents are fully prescient,

i.e., that they can predict the future. It “only” means that agents know prevailing equilibrium

prices conditional on the realized state of nature. They generally do not even have to agree

on the chances of these states, but they do have to agree on prices in each state.‡ The term

“perfect foresight” is standard terminology in general equilibrium theory, to which dynamic

asset pricing theory belongs.§

Acknowledging the inherent difficulty of achieving perfect foresight in the real world,

the literature has proposed alternative concepts. For instance, it has been suggested that

Temporary Equilibrium may explain prices and allocations in the interim (Radner, 1974;

Grandmont, 1977). The idea is that agents posit provisional (future) prices, optimize

with these prices in mind, and adjust expectations (of future prices) as experience grows.

Specific ways in which agents build expectations upon repetition include online regression

(Marcet and Sargent, 1988) and Bayesian updating (Jordan and Radner, 1982).

The problem with the Temporary Equilibrium is that it is silent about which prices (or

even range of prices) agents could reasonably hypothesize at the beginning. At best, they

happen to guess the true future equilibrium prices, in which case the Temporary Equilibrium

‡Some would call it rational expectations; we refrain from doing so use, in order not to confuse with the
assumption of correct beliefs about the occurrence of states. Lucas (1978), for instance, requires both correct
beliefs about state probabilities and perfect foresight. Under perfect foresight, the former is not needed.
Agents may even disagree on the chance that a state (contingency) obtains (Anderson and Bossaerts, 2019).

§Perfect foresight is analogous to Subgame Perfection in game theory: there too, players are supposed to
know how the game continues in every future node. Continuation is restricted to Nash (equilibrium) play
(Fudenberg and Levine, 1983).
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and the Perfect-Foresight Equilibrium coincide. It is unclear what the worst-case scenario

looks like.

An alternative theory does provide clean predictions, namely the Myopic Equilibrium. In

a simplified case, it can be defined as the equilibrium that obtains if agents only optimize

over the next period, ignoring any future possibility of re-trading, obviating the need to

form predictions about prices of currently non-traded securities. As a benchmark, we

derive the implications of myopia within the discrete-time/discrete-state version of the

Black-Scholes-Merton model as pioneered by Cox et al. (1979) and illustrated in Figure 1

(top).

Myopia is not really a bias, but rather an expression of bounded rationality. Myopia is

a mild form of narrow framing (Barberis et al., 2006), a well-documented heuristic that

humans adopt in the face of the complexity of decision-making under uncertainty (Tversky

and Kahneman, 1974). Intuitively, agents ignore future trading opportunities because it is

too difficult to guess what prices they could trade at. Under its most common interpretation,

narrow framing is even more extreme than myopia: the agent ignores holdings of items that

she cannot trade when making decision about today’s trades. In contrast, under myopia, the

agent does take into account quantities of goods she holds but cannot trade momentarily.

We shall see that the latter is crucial for pricing to be as if agents had perfect foresight.

In our theoretical analysis, we assume quadratic utility. This is equivalent to assuming

normally distributed portfolio returns, in the sense that both are consistent with mean-

variance optimization. Intertemporal models such as Merton’s ICAPM (Merton, 1973a) or
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the Black-Scholes model (Black and Scholes, 1973) effectively assume quadratic utility given

that changes in asset prices over short (infinitesimal) intervals are normally distributed.

Linear asset pricing models such as the CAPM or multi-factor models (Fama and French,

2004) directly assume mean-variance preferences.

Our theory explains how prices can be “right” even if allocations are “wrong.” Empiricists

often implicitly assume that this is possible when testing for asset pricing models despite

allocations (holdings) being clearly at odds with model predictions. For instance, linear

asset pricing models such as the CAPM imply that every investor should be fully diversified,

while, empirically, most investors clearly are not (Odean, 1999). Evidently, an implicit

acceptance of a theory does not make it true. Here, we could take one additional step

by looking for confirmatory (or contradictory) evidence in archival holdings data from

the field, which would be in line with the traditional approach of testing finance theories.

However, corresponding evidence could only confirm that the model equations fit, and

not that they fit because investors are indeed myopic. Moreover, field data only contains

holdings for realized states, whereas testing the theory requires to observe holdings in all

contingencies, even those that did not occur in the sample at hand.

To test the theory in a controlled way, we need an experiment in which we control

(induce) participants’ preferences across states and verify that prices can be consistent with

perfect foresight, even if participants’ choices reflect myopia. Therefore, we experimentally

test the theory by running several trading sessions, while fully controlling for any confound-
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ing effects of risk aversion. In particular, absent any extrinsic uncertainty, we incentivize

participants so that choices are as if governed by the rules of expected utility.¶

In the experiment, we deliberately did not induce quadratic utility. Instead, we induced

square-root utility. Under square-root utility, prices are almost but not exactly identical

in the Myopic and Perfect-Foresight Equilibria. Our design feature allowed us to test

for myopia against perfect foresight, not only by investigating allocations, but also by

studying prices. Testing power is enhanced because we can verify predictions across the

two equilibria in both allocations and prices.

We find strong support in favor of the Myopic Equilibrium: when market participants

have to trade assets sequentially, prices and allocations are better explained by the Myopic

Equilibrium than the Perfect-Foresight Equilibrium. When participants can trade all assets

simultaneously, prices and allocations are better explained by the Walrasian Equilibrium.

Price and allocation predictions in the Walrasian Equilibrium are identical to those in the

Perfect-Foresight Equilibrium. In the Walrasian Equilibrium, allocations are Pareto optimal.

It is customary to question the external validity of markets experiments of the type

we discuss here. The question one asks is whether the results would still obtain if we

were to scale them to the level of field markets. Our study does not shed light on this.‖

Instead, it investigates to what extent it is possible at all that prices could be right despite

bounded rationality among market participants. If this is generally believed to be true

¶We induce preferences that are isomorphic with expected utility, i.e., equilibrium prices and allocations
are as if we had introduced extrinsic uncertainty and agents indeed maximized expectations of the assumed
utility function.

‖We could, but that would require infrastructure and funding far beyond current levels.
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in field markets (as mentioned above, dynamic asset pricing theory invariably assumes

that prices are right), it should be true at a small scale and in a much better controlled

environment as well. If the theory fails in our experiment, what would make it work in the

field, where perfect foresight is even harder to obtain?

In Section II., we state the main result and provide the intuition behind it. A formal

derivation is delegated to Section III.. In Section IV., we describe the experiment we ran to

test the theory. Section V. presents the experimental evidence. In Section VI., we discuss the

implications of our theory for (i) the empirical evidence on various types of asset pricing

theory, (ii) the relevance of theory for the practice of finance, and (iii) the identification of

possible domains for successful active investing. Finally, Section VII. concludes.

II. THE MAIN RESULT

We now state the main result and the intuition behind it. The formal derivation is delegated

to the next section.

Theoretical Result. In the binomial model, the Myopic Equilibrium produces precise, generic

predictions. Assuming quadratic utility, we show that prices will be exactly the same as if

agents had perfect foresight. We will refer to this prediction as “prices are right.” Choices

(allocations), however, may be far from optimal. That is, “allocations are wrong.”

The result may be surprising, but the intuition as to why prices can be right even if

agents are myopic is simple. Myopia does not mean that agents are ignoring contingent
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endowments that they cannot trade away from in the current trading period. Instead, they

do take these endowments into account; only, they assume that these are (permanently)

non-tradeable. For instance, an agent with a high contingent, but currently non-traded,

endowment assumes that she cannot ever sell it, which she will signal indirectly through

orders that reveal that she is interested in portfolios that pay much in other contingencies

(she wants to smooth consumption across contingencies). If everyone has a high endowment

in the same non-traded contingency, then prices of currently traded contingencies will

reflect this. This is not specific to quadratic utility, but with quadratic utility, prices will be

exactly as if all contingencies are traded at once.

Therefore, through demand for currently traded assets, market prices under myopia indi-

rectly reflect knowledge of the scarcity or abundance of currently non-traded endowments,

and as such prices behave as if the latter had been available for trade.

III. THEORETICAL DETAILS

We start from the following notation and assumptions.

• As in Figure 1 (top), we assume three terminal states (S = 3). Beliefs about state

chances are denoted αs, s ∈ {1, 2,3}. Beliefs of agents are homogeneous.

• There is a numeraire, with price equal to unity. We refer to it as “cash” C , which pays

$1 in all states. The remaining two assets are Arrow-Debreu (AD) securities that pay

in state s = 1 (“asset 1”) or s = 3 (“asset 3”), respectively.
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• Agent i chooses (trades towards) holdings x i
k of asset k, k ∈ {C , 1, 3} and starts with

an endowment of asset k equal to ei
k.

Throughout our analysis, we contrast (i) a complete-markets case with the (potential)

myopia implications of (ii) an incomplete-markets case whose structure allows for dynamic

completeness (Duffie and Huang, 1985). Importantly, in the presence of perfect foresight,

the two cases are equivalent.

(i) In the complete-markets case, both assets and cash are traded simultaneously. Let pk

denote the price of asset k, k ∈ {C , 1, 3}. Obviously, pC = 1.

(ii) In the incomplete-markets case, trading happens sequentially. In round 1, assets 1

and cash are traded, while asset 3 and cash are traded in round 2. To disambiguate

prices, let q1 be the price of asset 1 in round 1 and q3 the price of asset 3 in round 2.

Cash is always priced at $1.

Furthermore, we make the following assumption regarding the agents.

• All agents have state-independent and state-separable quadratic preferences.

As is well known (Rubinstein, 1974), the last assumption implies the existence of a

representative agent. The formal proof of our Theoretical Result in the Appendix does not

rely on this result, however. Instead, its analysis starts at the individual level. Here, we

broadly sketch the arguments behind the proof at the level of the representative agent.
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The representative agent has differentiable utility u(ws), where ws is final wealth in

state s. Utility is state-independent and quadratic: u(ws) = −
b0
2 (ws)2 + b1ws + b2. Across

states, utility is separable, so outcomes are evaluated based on expected utility
∑

s αsu(ws).

Working with the representative agent, we can first write down the respective budget

constraints for the two cases. Under complete markets, there is only one budget constraint:

p1 x1 + xC + p3 x3 = p1e1 + eC + p3e3.

When markets are incomplete, we have two separate budget constraints, corresponding to

the two trading rounds. In round 1, the budget constraint is:

q1 x1 + xC = q1e1 + eC .

In round 2, the budget constraint is:

yC + q3 x3 = xC + q3e3,

where yC denotes the updated cash holding decision for round 2.
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Second, we can write down the simultaneous optimality conditions for the complete-

markets case, namely,

α1u′(x1 + xC) = λp1,

α1u′(x1 + xC) +α2u′(xC) +α3u′(x3 + xC) = λ,

α3u′(x3 + xC) = λp3.

Notice the second equation: the Lagrange multiplier (λ) is to equal the expected marginal

utility across all states.

We then compare these conditions to the (sequential) optimality conditions for the

incomplete-markets case assuming myopia. For round 1, the optimality conditions are:

α1u′(x1 + xC) = µq1,

α1u′(x1 + xC) +α2u′(xC) +α3u′(e3 + xC) = µ.

Notice the restriction that the holdings of asset 3 equal the endowment. Also, the Lagrange

multiplier (µ) is again to equal the expected marginal utility across all states. Despite

the fact that asset 3 cannot be traded, the endowment of asset 3 still influences trading

decisions in round 1. As such, relative scarcity or abundance of non-traded AD securities

will already affect trade, and hence, prices in round 1. This is the key reason why myopia

has no influence on prices (under quadratic utility).
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For round 2, the optimality conditions are straightforward:

α1u′(x1 + yC) +α2u′(yC) +α3u′(x3 + yC) = π,

α3u′(x3 + yC) = πq3.

The question is whether the same prices that clear the complete markets can also

clear the incomplete markets under myopia. That is, letting p∗k denote complete-markets

equilibrium prices, is it possible that there are myopic incomplete-markets equilibrium

prices qo
1, qo

C and qo
3 such that:

qo
1

?
= p∗1,

qo
C

?
= p∗C ,

qo
3

?
= p∗3.

The answer is affirmative. To illustrate the equilibrium implications of our result, we end

this section with a simple numerical example.

Example. There are three types of investors in the economy, each with equal relative mass.

Their choices exhibit quadratic utility with common parameters: b0 = 0.1, b1 = 1.0, and

b2 = 0. Beliefs are common, with αs = 1/3 for s ∈ {1,2,3}. There exist three securities,

two Arrow-Debreu (state) securities that pay $1 in states s = 1 and s = 3, respectively,

and cash, which is worth $1 in every state. Agents differ in initial endowments. Type-1
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agents start with 6 units of state security 1; type-2 agents start with 2 units of cash; type-3

agents start with 2 units of state security 3 (see top panel of Table 1).

Using cash as numeraire, the complete-markets equilibrium prices are as follows:


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Notice that payments in state 1 are priced lower than in state 3, which is expected since

state security 3 is in lowest supply. The complete-markets equilibrium allocations are

reported in the middle panel of Table 1.

Next, we construct an incomplete set of markets by allowing investors to trade only

state security 1 (against cash) in round 1, and state security 3 in round 2. No additional

information is released in-between trading rounds.

Illustrating our main result, complete-markets prices also clear the incomplete markets,

i.e,

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The above equilibrium prices lead to the end-of-round-1 (for state security 1, these are

final allocations) and end-of-round-2 allocations reported in the bottom panel of Table 1.

Note that we do not impose short-sale constraints; otherwise the first-order conditions
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Table 1: Numerical Example of Initial Endowments and Equilibrium Allocations

Table reports exemplary initial endowments and corresponding equilibrium allocations for both the complete-

markets and the incomplete-markets (sequential) case. All agent types display the same quadratic utility

of state-dependent wealth ws, i.e., u(ws) = −
b0
2 (ws)2 + b1ws + b2, with b0 = 0.1, b1 = 1.0, and b2 = 0,

respectively. Initial endowments differ as indicated in the top panel. There are an equal number of agents of

each type.

Type 1 Type 2 Type 3

INITIAL ENDOWMENTS

State security 1 (e1) 6 0 0
Cash (eC) 0 2 0
State security 3 (e3) 0 0 2

COMPLETE MARKETS

State security 1 (x∗1) 1.9383 1.8765 2.1852
Cash (x∗C) 0.9547 1.2428 -0.1975
State security 3 (x∗3) 0.6461 0.6255 0.7284

INCOMPLETE MARKETS

Round 1

State security 1 (x o
1) 1.6169 1.5654 2.8177

Cash (x o
C) 1.2688 1.5469 -0.8157

Round 2

Cash (yo
C) 1.1029 1.3863 -0.4892

State security 3 (x o
3) 0.4849 0.4695 1.0456

listed before would not apply. Our agent 3 sells short in both the complete-markets

and incomplete-markets equilibrium. Importantly, the incomplete-markets equilibrium

allocations are very different from the complete-markets ones. Prices, however are identical.

One remark is in order. The result fails to hold exactly for other utility functions.

However, as we shall demonstrate below (relying on the identical market structures), price

differences are generally small, whereas allocations continue to differ substantially.
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IV. THE EXPERIMENT

It is ultimately an empirical question which of the two theories – perfect foresight, or

myopia (narrow framing) – better explains actual market outcomes. We therefore design

an experiment that allows us to clearly distinguish between the two theories. The design

closely follows the binomial model of our theoretical analysis. To reduce complexity as

much as possible, we limit our attention to two trading rounds and three states.

To avoid confounding factors, we eliminate all extrinsic uncertainty, however. In

the standard interpretation of the binomial model, we would pay participants based on

the realization of a single state, with elimination of one state after each trading round.

Moreover, we assume choices to be governed by the rules of expected utility, which means

that participants are to choose as if maximizing a weighted average of utilities across states,

where weights equal the chances of the occurrence of respective states.

In our design, participants are paid the weighted average of nonlinear transformations of

the payoffs on three traded assets. Starting from heterogeneous endowments, participants

first trade one state-dependent asset (called “Steel”) and the numeraire asset (a cash

equivalent called “Plastic”), followed by a second round when they trade a second state-

dependent asset (called “Wood”) against the numeraire. Crucially, this way, there is no

uncertainty except about the price at which the second asset will trade. This is illustrated

in Figure 2 (bottom).
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Figure 2: Schematic Representation of Trade and Payoffs

Another way to see this is as follows. If we had paid based on the drawing of a state s

whose chance αs was known to participants, then for the theory to apply, we would have

to maintain the auxiliary assumption that all participants choose on the basis of expected

utility. A rejection of the theoretical predictions could then either be attributed to violations

of expected utility, or to the absence of myopia among participants. In addition, we would
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have to estimate the utility function u(·) revealed in participants’ choices. Any resulting

estimation error would have reduced the power of our tests even further.

Our design can be considered a “certainty equivalent” version of the two-period, three-

state binomial model. The use of certainty equivalent settings has proven useful to under-

stand, among others, off-equilibrium evolution of prices and states in financial markets

(Asparouhova et al., 2020). In the certainty-equivalent version, neither are participants

required to exhibit expected utility preferences nor does the experimenter need to know

their risk aversion; participant choices merely need to reflect non-satiation (for money).

We compare outcomes in our two-round trading setting, where, sequentially, only

one asset is traded for the numeraire in any given round, against a single-round trading

setting, where all three assets (including the numeraire) are traded simultaneously. This is

illustrated in Figure 2 (top). We refer to the former as the sequential treatment and to the

latter as the simultaneous treatment. Importantly, while any given market in the sequential

treatment is incomplete in isolation, taken together they dynamically complete each other.

The appropriate notion of equilibrium that applies to the simultaneous treatment

is the Walrasian Equilibrium, where demands equal supplies given equilibrium prices.

Extrinsic uncertainty is known to generate enormous heterogeneity in choices, both across participants,
and for a given participant over time (Bossaerts et al., 2007), making it impossible to compare outcomes
across treatments. Indeed, in a precursor to this experiment where payoffs were determined by the random
drawing of one out of three states (Bossaerts et al., 2008), there were no significant differences in either
prices or choices between (i) a treatment where three securities with independent payoffs were traded
once, and (ii) a treatment where one of these securities could not be transacted at all, two trading rounds
were introduced, and one of the states was excluded after one round. These results could be interpreted
as providing support for perfect foresight. However, they could also have been the result of lack of power,
with preferences for extrinsic uncertainty that cannot be captured using expected utility with time-invariant
beliefs and risk aversion.
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The standard notion of equilibrium for the sequential treatment is the Perfect-Foresight

Equilibrium, where, in round 1, agents optimize dynamically to determine current choices

given correct (perfect) foresight of the (Walrasian) Equilibrium prices to prevail in round 2.

The Perfect-Foresight Equilibrium is the almost exclusive equilibrium notion of dynamic

asset pricing theory.††

Given the dynamic completeness of our sequential treatment, its corresponding Perfect-

Foresight Equilibrium coincides with the Walrasian Equilibrium of the simultaneous treat-

ment. Crucially, if participants’ myopia prohibits perfect foresight, final holdings in the

sequential treatment will not equilibrate towards Perfect-Foresight Equilibrium allocations

and hence will also differ from Walrasian Equilibrium allocations of the simultaneous

treatment.

Finally, in our experiment, we induce square-root utility instead of quadratic utility,

for two reasons. First, this avoids issues of decreasing utility beyond a certain level

of securities holdings. Second, and more importantly, the Myopic Equilibrium prices

of sequential markets are no longer identical to those in the Walrasian Equilibrium of

simultaneous markets, and hence, to those of the Perfect-Foresight Equilibrium of sequential

markets. As such, square-root utility provides a stronger test of the theory: in the sequential

treatment, both allocations and prices are expected to be different from the Perfect-Foresight

Equilibrium. Had we chosen quadratic utility, only predicted choices would have been

different.
††See Radner (1972), Duffie and Huang (1985), Anderson and Sonnenschein (1985), and Schraeder

(2015). It is also used in the disagreement literature, see, e.g., Scheinkman and Xiong (2003).
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Instructions for the experiment can be found in Appendix 2. The Appendix also includes

snapshots of the trading interface as well as the online spreadsheet with which participants

could compute widget production (transformed payoffs) as a function of all traded input

goods.

V. EXPERIMENTAL EVIDENCE

We ran eight experimental sessions involving 117 participants. Participants were undergrad-

uate and postgraduate students from University of Melbourne.‡‡ We randomly alternated

between sequential and simultaneous markets, generating between five and six replications

per session. In three sessions, endowments (and hence, equilibria) changed across replica-

tions, while in the remaining five sessions, they remained constant across replications.§§

At the end of each session, participants were paid the payoffs (in AUD) from one

randomly selected replication. Payoffs ranged from $40 to $57, with a mean of $50.74.

No session lasted longer than two and a half hours. Given the deliberate exclusion of any

exogenous uncertainty, the low variation in payoffs (standard deviation of $3.65) reflects a

high degree of competitiveness. Hence, our key assumption of non-satiation seems justified.

‡‡The study was approved by the University of Melbourne Human Research Ethics Committee (Ethics ID:
1749620.1) and was conducted in accordance with the World Medical Association Declaration of Helsinki.
All participants provided written informed consent.

§§Note, even with fixed endowments, initial holdings varied across participants.
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A. DESCRIPTIVE RESULTS

Here, we illustrate the results for one exemplary session with variable endowments. Figure 3

shows trading prices for both assets steel (asset 1) and wood (asset 3) for the whole session.

Markets are grouped according to their treatment, with sequential (simultaneous) markets

displayed in the top (bottom) row. Additionally, markets differ in terms of initial allocations,

resulting in different equilibrium predictions. The plots in Figure 3 are vertically aligned in

accordance with their initial allocations; e.g., in the first column, Market 1 and Market 6

have identical initial allocations.

We observe that prices in the sequential treatment are myopic, whereas, in the simulta-

neous treatment, they are economically indistinguishable from the Walrasian Equilibrium.

This is consistent with our hypothesis of myopia for sequential markets. Moreover, Figure 3

illustrates that the Walrasian Equilibrium actually works for multiple simultaneous markets,

which, considering the required cognitive efforts, is far from self-evident.

Myopic Equilibrium prices (top row) are generally very similar to their Walrasian

counterparts (bottom row). Due to square-root utility (instead of quadratic utility – see

above), equilibrium prices for steel do measurably deviate between Market 2 and Market 5

(third column), however. The respective trading prices thus provide support for myopic

behavior under the sequential treatment.

In contrast to prices, allocations predicted by the Myopic vs. the Perfect-Foresight

Equilibrium are distinctly different for the early traded asset (steel) in sequential markets.
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Figure 3: Trading Prices of One Session

For the sequential treatment, Figure 4 (left) shows histograms of the absolute differences

in final steel holdings relative to the Myopic (“M-Eq”) and the Perfect-Foresight (“PF-Eq”)

Equilibrium, respectively. Accordingly, for the simultaneous treatment, Figure 4 (right)

shows histograms of absolute holding differences relative to the analogous Myopic (“M-Eq”)

and Walrasian (“W-Eq”) Equilibrium, respectively.

While the simultaneous treatment generates holdings that are close to the (Pareto opti-

mal) allocations of the Walrasian Equilibrium, Figure 4 (left) indicates that the sequential

treatment generates holdings that are much closer to the (inferior) myopic allocations.
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(a) Sequential Markets (b) Simultaneous Markets

Figure 4: Distribution of Final Allocations

Focusing on sequential market replications, our descriptive results also reject the Tempo-

rary Equilibrium, which would agents deliberately have budget their intermediate holdings

in anticipation of later trading opportunities (based on price forecasts that are not neces-

sarily correct).

B. FORMAL EVIDENCE

The following is based on an exhaustive analysis of price and holdings data across all

sessions. In each case, we only report the model results that survived a strict elimination

strategy using standard information criteria, i.e., the Akaike Information Criterion (AIC)
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and the Bayesian Information Criterion (BIC).¶¶ Various potential confounding factors

are considered, including session, market type (sequential vs. simultaneous), replication,

and participant-specific random effects (intercepts). Since the Walrasian Equilibrium of

any given simultaneous market coincides with the Perfect-Foresight Equilibrium of the

corresponding sequential market, we below solely refer to the latter for both treatments.

Prices. Table 2 reports the results from pooled price level regressions. To control for

the collinearity between the Perfect-Foresight and the Myopic Equilibrium, we consider

two model specifications: starting from Perfect-Foresight Equilibrium prices, we add either

(1) the differences between Myopic Equilibrium and corresponding Perfect-Foresight Equi-

librium prices, or (2) the orthogonalized residuals from regressing those differences on the

latter.

For both specifications, the best model explains steel and wood prices in terms of (i) the

Perfect-Foresight Equilibrium prices, (ii) the (orthogonalized) differences between Myopic

Equilibrium and corresponding Perfect-Foresight Equilibrium prices, and (iii) a correction

to accommodate a better fit of Perfect-Foresight Equilibrium prices during simultaneous

markets (DSIM = 1). Included are random effects at the level of sessions, market types,

and replications. Note, the two models perform equally well according to both information

criteria.

The coefficient estimates reported in Table 2 imply that Perfect-Foresight Equilibrium

prices do not fully predict trade prices (the corresponding coefficients are significantly

¶¶See Bossaerts and Hillion (1999) for an early application in finance.

25



Table 2: Trade Price Regressions

Table reports coefficient estimates (with t-stats in parentheses) of generalized linear mixed models of steel

and wood trade prices (levels). Model selection is based on the Akaike Information Criterion (AIC) and the

Bayesian Information Criterion (BIC). Only the best models according to both criteria are shown. “PF-Eq

price” denotes Perfect-Foresight Equilibrium prices, “∆ M-Eq price” denotes differences between Myopic

Equilibrium prices and corresponding Perfect-Foresight Equilibrium prices, and “Orth. ∆ M-Eq price” denotes

orthogonalized residuals of “∆ M-Eq price” with respect to “PF-Eq price.” “DSIM” refers to a dummy variable

indicating simultaneous market replications. To capture potential confounding factors, random effects per

session, market type (sequential vs. simultaneous), replication, and participant are considered for model

selection. 1 indicates t-stats for the null hypothesis of a slope equal to one.

(1) (2)

Intercept 1.299 -0.382
(0.91) (-0.26)

PF-Eq price 0.831 0.872
(-22.43)1 (-14.08)1

∆ M-Eq price 0.764
(13.48)

Orth. ∆ M-Eq price 0.764
(13.48)

PF-Eq price × DSIM 0.073 0.073
(14.58) (14.58)

Session RE YES YES

Market type RE YES YES

Replication RE YES YES

Participant RE NO NO

Observations 4,119 4,119

AIC 18,766 18,766

BIC 18,817 18,817

lower than one), but they perform significantly better (p < 0.001) in the simultaneous

treatment (when DSIM = 1). Furthermore, the increment towards Myopic Equilibrium prices

(whether orthogonalized or not) exhibits strong additional explanatory power (p < 0.001).

Altogether, while prices are closest to the Perfect-Foresight Equilibrium in the simultaneous

treatment, myopia explains a significant fraction of the deviations.
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Table 3: Final Holdings Regressions

Table reports coefficient estimates (with t-stats in parentheses) of generalized linear mixed models of final steel holdings. Model selec-

tion is based on the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Only the best models according

to both criteria are shown. “PF-Eq holdings” denotes Perfect-Foresight Equilibrium holdings, “∆ M-Eq holdings” denotes differences

between Myopic Equilibrium holdings and corresponding Perfect-Foresight Equilibrium holdings, and “Orth.∆M-Eq holdings” denotes

orthogonalized residuals of “∆ M-Eq holdings” with respect to “PF-Eq holdings.” “DSIM” and ‘DVAR” refer to dummy variables indicat-

ing simultaneous market replications and sessions with non-stationary (variant) endowments, respectively. “DTYPE” denotes a dummy

variable indicating participants with (relatively) low cash endowments. To capture potential confounding factors, random effects per

session, market type (sequential vs. simultaneous), replication, and participant are considered for model selection. 1 indicates t-stats

for the null hypothesis of a slope equal to one.

(1) (2)

Intercept -2.550 -0.711
(-3.03) (-1.09)

PF-Eq holdings 0.996 0.852
(-0.77)1 (-3.21)1

∆ M-Eq holdings 2.634
(5.80)

∆ M-Eq holdings × DSIM -0.910
(-2.26)

∆ M-Eq holdings × DVAR -0.958
(-3.30)

Orth. ∆ M-Eq holdings 15.945
(6.30)

Orth. ∆ M-Eq holdings × DSIM -3.930
(-2.08)

Orth. ∆ M-Eq holdings × DVAR -6.087
(-2.90)

DSIM 1.948 1.439
(3.27) (3.61)

DTYPE 6.091 4.727
(4.62) (5.05)

DSIM × DTYPE -4.027 -2.910
(-3.37) (-3.92)

Session RE NO NO

Market type RE NO NO

Replication RE NO NO

Participant RE YES YES

Observations 900 900

AIC 4,314 4,302

BIC 4,362 4,350

Holdings. Table 3 reports the results from pooled final holdings regressions. We focus on

final steel holdings (asset 1), as the differences between predicted wood holdings (asset 3)

are negligible. The best models explain final steel holdings in terms of (among others) both
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Perfect-Foresight Equilibrium holdings and the corresponding increments towards Myopic

Equilibrium holdings.

According to the regression in column (1), the Perfect-Foresight Equilibrium provides

unbiased predictions of steel holdings even in the (baseline) sequential-markets treatment

(slope coefficient is only insignificantly different from one). The results in column (2),

however, attribute this finding to correlation with holdings predicted under the Myopic

Equilibrium. Once the contributions of the two equilibria are disentangled by replacing the

difference with the orthogonalized difference, the Perfect Foresight Equilibrium holdings

underestimate the outcomes in the baseline (coefficient significantly below one); the

(orthogonalized) difference explains the remainder (highly significant, positive coefficient).

As expected, interaction with the dummy variable for simultaneous treatment significantly

reduces the predictive power of the Myopic Equilibrium. The reduction is even bigger in

the non-stationary treatment (DVAR = 1), but it does not completely eliminate the pulling

power of the Myopic Equilibrium in the baseline. Adding the two interaction coefficients

(−3.930− 6.087 = −10.017) shows that the Myopic Equilibrium still provides explanatory

power even in simultaneous non-stationary markets (total coefficient = 15.945−10.017 =

5.928).

Finally, besides participant-specific random effects, the best model fits both include

confounding effects from dummy covariates for market type (simultaneous markets) and

endowment type (relatively low cash endowment), as well as their interaction. While the

effect of the former is due to a slightly different number of replication types with non-
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stationary aggregate steel endowments, the latter captures differential trading incentives

given initial endowments. The interaction term is simple to interpret: in the simultaneous

treatment, participants with low cash endowment (and hence, high steel endowment), sell

more of their holdings. In the baseline, they keep more of their endowment (of steel), all

things equal.

VI. IMPLICATIONS

A. ON THE EMPIRICAL RECORD OF ASSET PRICING THEORY

It has long been observed that there is a discrepancy in empirical support (in historical

data from the field) for asset pricing theory depending on whether it explains prices in

terms of benchmark portfolio values or whether the theory explains prices in terms of

covariation with choices such as consumption (Campbell and Cochrane, 2000). Generally,

benchmark portfolio models (multi-factor models) generate far more support. Such models

only require correct prices. Models that tie prices to choices require choices to be right too,

which implies perfect foresight. Our theory shows that prices can be right, while choices

are wrong, because they reflect myopia. Therefore, our theory may explain why benchmark

portfolio models fit the historical record better than consumption-based models.

There are other puzzles that our theory sheds light on. For instance, it has been observed

in a number of studies that option prices were of similar (informational) quality before and

after the publication of the Black-Scholes-Merton model (Moore and Juh, 2006; Chambers
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and Saleuddin, 2019). It seems as if traders magically had already figured out how to

correctly price options long before theorists derived the right model. This is particularly

bothersome if this evidence dates back to a time when the core mathematical framework,

Itô calculus, had not been developed yet. Our theory predicts that this is possible: prices

can be right even in the absence of correct (perfect) foresight.

B. THE RELEVANCE OF THEORY FOR THE PRACTICE OF FINANCE

A practical implication of our findings could be phrased in the form of a question: Why

would the industry bother hiring university graduates who are trained in the theory? Indeed,

evidence abounds that market participants do not have perfect foresight and that it is hard

to reconcile market prices with theory-implied fundamentals, such as consumption choices.

In view of this evidence, it may seem pointless endowing future finance practitioners with

theoretical knowledge, especially if the theory relies on “correct prices,” as it is ubiquitously

the case in both asset pricing and corporate finance. A better approach, it is claimed, would

be to teach them the psychology of corporate decision-making (see, e.g., Baker and Wurgler

(2013)).

Our answer is that these objections may be unjustified when the theory only relies on

correct pricing. Capital structure theory, hedging techniques in options analysis, or duration

and immunization analysis in term structure theory “only” require prices to be right, while

individual choices may be wrong.
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C. WHERE PRICES MAY NOT BE RIGHT

Our main theoretical result relies on myopia. The experiment shows that myopia is a

reasonable working hypothesis. We do not expect myopia to obtain in all circumstances,

however. Indeed, there are situations in which agents are forced to predict future prices.

That is, agents have to speculate. For instance, intermediate dividend payments may require

agents to think about future prices, if only because “home-made dividends” (synthetic

dividends constructed purely from buying and selling securities) may be taxed less heavily

than actual dividends. In the face of such market frictions, agents have to consider whether

price changes upon future dividend payments are such that collecting dividends is not

beneficial. Speculation about ex-dividend prices may lead to mis-pricing, which could be

exploited. Therefore, mis-pricing may emerge in areas such as, e.g., high-dividend-yield

stocks.

Two recent experiments demonstrate how forced speculation leads to wrong prices. In

the first experiment, participants were forced to think about future dividend endowments

because their utility depended on how much cash flows today’s investments would generate

in the future (Asparouhova et al., 2016). In a second experiment, participants were paid

only if they assured the right amount of cash flows from future dividends (Asparouhova,

Besliu, and Lemmon, 2016). In both experiments, participants had to speculate about

future prices, and significant mis-pricing emerged because of lack of perfect foresight.

31



Likewise, prices will be wrong when agents want to speculate. The desire to speculate,

and the negative impact on price quality, has been documented in a number of circumstances,

such as for technology stocks (Brunnermeier and Nagel, 2004), or when stocks exhibit high

betas (Hong and Sraer, 2016).

When prices are right, there is no benefit from active portfolio management: strategic

asset allocation in the form of passive investments in a number of indices will eventually

outperform actively managed portfolios. However, in situations where investors are forced

to think about future re-sale prices of their investments, mis-pricing may emerge. The same

may occur when investors voluntarily engage in speculation. Active portfolio management

may become beneficial. As such, our findings suggest domains where active portfolio

management should concentrate.

Interestingly, prices may be “right” even if agents do not attempt to be right. However,

prices may become wrong once agents start speculating about the future, i.e., when they

attempt to be “right.” Crowd (“swarm”) intelligence (Kennedy, 2006) relies on well-adapted

simplicity of the members, and in our setting this appears to be true as well. In an attempt

to improve their personal welfare, members’ efforts to better understand the system as a

whole actually destroy the system’s intelligence, and hence, the system’s ability to make

everyone better off. This is disconcerting, because experimental evidence therefore seems

to suggest that participant simplicity is necessary for market intelligence.
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VII. CONCLUSION

In this paper, we study traders’ ability to attain perfect foresight, a key assumption of

dynamic asset pricing theory that is not sufficiently made explicit in the literature. We first

show theoretically that, under quadratic preferences, Myopic Equilibrium prices generically

are as if agents had perfect foresight, even if equilibrium allocations are different. Second,

with a markets experiment, we find strong empirical evidence for myopia in both observed

prices and choices.

Our findings have important implications for finance. We provide a foundation for asset

pricing that does not require the (empirically rejected) level of rationality and foresight

inherent in the traditional premise of market efficiency. Moreover, our findings could

explain why asset pricing models that relate prices of risky securities to each other (e.g.,

multi-factor models) generally fit historical data from field markets better than models

that relate prices to choices (e.g., consumption-based models). Finally, our result of price

efficiency obtains in the absence of a fully rational marginal investor. However, given price

efficiency, trading towards Pareto optimal allocations – although hard – is still feasible at

the individual level.
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APPENDIX 1: PROOF OF THE MAIN RESULT

There are two parts to the proof. The first part deals with the case where trading is

sequential but no information is released between trading rounds. This case is relevant

for the experiment, because there is no uncertainty; probabilities are merely weights with

which agent earnings are calculated. In the second part, we consider the case where

information is released between trading rounds, and hence, weights (probabilities) are

updated.

CASE I: NO INFORMATION RELEASE BETWEEN TRADING ROUNDS

We first work with the optimality conditions (first-order conditions) at the individual level

(without explicitly using indices that track the individual) and then sum across agents to

obtain market-wide predictions. We use quadratic utility, with b0 > 0 (risk aversion) and

b1 > 0 large enough so that an interior optimum exists and the first-order conditions are

valid. Both parameters may differ across individuals.

For an individual, write the optimality conditions in matrix form, and add the budget

constraint for round 1. Define B := 1/b0.
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Since these are optimality and budget constraints for the representative agent, these will

also be equilibrium conditions. That is, prices also need to satisfy these equations. Round-2

optimality conditions and budget constraint are as follows:
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C + qo

3e3















(2)

Complete-markets optimality conditions, for comparison, are the following:























α1 α1 0 Bp∗1

α1 3(α1 +α2 +α3) α3 B

0 α3 α3 Bp∗3

p∗1 1 p∗3 0













































x∗1

x∗C

x∗3

λ∗























=























α1Bb1

3(α1 +α2 +α3)Bb1

α3Bb1

p∗1e1 + eC + p∗3e3























(3)

We assume that prices and choices in the complete-markets case are such that equilibrium

obtains. Our question is: if we set qo
1 = p∗1, qo

3 = p∗3 in (1) and (2), will we be able to clear

markets? That is, for the proposed prices, would excess demands equal zero?

To answer this question, we first add the first-order conditions (including budget

constraints) across agents. To simplify notation, variables will now refer to sums of demands,

sum of endowments, and risk-tolerance weighted Lagrange multipliers. E.g.,

x0
3 :=
∑

k

x k,0
3 ,
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where k indexes agents,

eC :=
∑

k

ek
C ,

and

λ∗ :=
∑

k

λk,∗Bk (=
∑

k

λk,∗/bk
0).

After summation across agents, subtract complete-markets equations from corresponding

incomplete-markets equations:

α1(x
o
1 − x∗1) +α1(x

o
C − x∗C) + (µ

o −λ∗)p∗1 = 0 (4)

α3(y
o
C − x∗C) +α3(x

o
3 − x∗3) + (π

o −λ∗)p∗3 = 0 (5)

α1(x
o
1 − x∗1) + 3(α1 +α2 +α3)(x

o
C − x∗C) +α3(e3 − x∗3) + (µ

o −λ∗) = 0 (6)

α1(x
o
1 − x∗1) + 3(α1 +α2 +α3)(y

o
C − x∗C) +α3(x

o
3 − x∗3) + (π

o −λ∗) = 0 (7)

Since x∗1 = e1, x∗C = eC , x∗3 = e3 (we assume that we are in the complete-markets

equilibrium), we can substitute e1, eC and e3 for x∗1, x∗C and x∗3. After this, multiply (6) by

p∗1, subtract the result from (4), and eliminate terms equal to zero:

α1(1− p∗1)(x
o
1 − e1) + (α1 − 3(α1 +α2 +α3)p

∗
1)(x

o
C − eC) = 0. (8)
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Do the analogous for (5) and (7), taking into account that x o
1 = e1 since agents cannot

trade asset 1 in round 2:

(α3 − 3(α1 +α2 +α3)p
∗
3)(y

o
C − eC) +α3(1− p∗3)(x

o
3 − e3) = 0. (9)

Now add the incomplete-markets budget constraints in order to generate a system of

equations in excess demands. Instead of blindly adding the round-2 budget constraint, we

add it to the round-1 budget constraint in order to eliminate the round-1 choice of cash

(which enters as an endowment in the round-2 budget constraint). So, add lines 3 in (1)

and (2) (at complete-markets equilibrium prices):

p∗1(x
o
1 − e1) + (x

o
C − ec) + (y

o
C − x o

C) + p∗3(x
o
3 − e3)

= p∗1(x
o
1 − e1) + (y

o
C − eC) + p∗3(x

o
3 − e3) = 0.

The system of equations defining the equilibrium becomes:























α1(1− p∗1) α1 − 3(α1 +α2 +α3)p∗1 0 0

0 0 α3 − 3(α1 +α2 +α3)p∗3 α3(1− p∗3)

p∗1 1 0 0

p∗1 0 1 p∗3













































x o
1 − e1

x o
C − eC

y o
C − eC

x o
3 − e3























42



=























0

0

0

0























Since the coefficient matrix is of full rank, there is only one solution to this homogeneous

system of equations, namely, the vector of zeros. That is, markets clear, while demands are

optimal.

CASE II: INFORMATION RELEASE BETWEEN TRADING ROUNDS

We now consider a situation where information is released between trading rounds 1 and 2.

This leads to updates of the weights, from αs to α′s (all s), since these are probabilities. The

new weights constitute random variables: they depend on the particulars of the information

release. In the Perfect-Foresight Equilibrium, agents are assumed to be Bayesian. This

implies the following restrictions on weights:

αs = E[α′s].

That is, round-1 weights equal expected round-2 weights. We will not need this restriction

in our proof, however.

Before, we compared allocations and prices in the Myopic Equilibrium against those of

the complete-markets (simultaneous-trading) equilibrium. Now, we compare the Myopic
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Equilibrium to the Perfect-Foresight Equilibrium. This is possible because Duffie and

Huang (1985) proved that the complete-markets equilibrium allocations and prices can be

implemented in a Perfect-Foresight Equilibrium. We thus assume that the Perfect-Foresight

Equilibrium prices p+1 and p′+3 and equilibrium choices x+1 , x+C , y ′+C and x ′+3 implement the

complete-markets equilibrium prices p∗1 and p∗3 and equilibrium allocations x∗1, x∗C and x∗3.

Notice that p′+3 , y ′+C and x ′+3 depend on the information released between trading rounds;

there are as many outcomes for these variables as there are possible information releases.

See Duffie and Huang (1985) for details.

Let us start with remembering the first-order conditions for optimal allocations in the

Perfect-Foresight Equilibrium. They look like those in a Myopic Equilibrium, for one crucial

exception. For general utility functions (strictly concave, so an interior solution is possible),

round-1 conditions are as follows:

α1u′(x+1 + x+C ) = λ+p+1 ,

α1u′(x+1 + x+C ) +α2u′(x+C ) +α3u′(e3 + x+C ) = λ+,

p+1 x+1 + x+C = p+1 e1 + eC .
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Generic round-2 conditions are:

α′1u′(x+1 + y ′+C ) +α
′
2u′(y ′+C ) +α

′
3u′(x ′+3 + y ′+C ) = θ ′+,

α′3u′(x ′+3 + y ′+C ) = θ ′+p′+3 ,

y ′+C + p′+3 x ′+3 = x+C + p′+3 e3.

The are as many round-2 condition triplets as there are possible information releases.

Importantly, x+1 and x+C are determined by all conditions. In a Myopic Equilibrium, they

are determined only by round-1 conditions. In that sense, the conditions are very different

for myopia.

Translated into quadratic utility, and using matrix notation, these equations become:















α1 α1 Bp+1

α1 3(α1 +α2 +α3) B

p+1 1 0





























x+1

x+C

λ+















=















α1Bb1

−α3e3 + 3(α1 +α2 +α3)Bb1

p+1 e1 + eC















(10)















α′3 α′3 Bp+3

3(α′1 +α
′
2 +α

′
3) α′3 B

1 p+3 0





























y ′+C

x ′+3

θ ′+















=















α′3Bb1

−α′1 x+1 + 3(α′1 +α
′
2 +α

′
3)Bb1

x+C + p′+3 e3















(11)

The Myopic-Equilibrium conditions are the same as before, except that round-2 restrictions

apply separately to each possible information release. So we do not repeat them here. We
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will add “primes” to round-2 decision variables, in order to make clear that these variables

depend on information release.

As before, we first add the first-order conditions (including budget constraints) across

agents. To simplify notation, variables will now refer to sums of demands, sum of endow-

ments, and risk-tolerance weighted Lagrange multipliers. After summation across agents,

subtract perfect-foresight equations from corresponding incomplete-markets equations:

α1(x
o
1 − x+1 ) +α1(x

o
C − x+C ) + (µ

o −λ+)p+1 = 0 (12)

α′3(y
′o
C − y ′+C ) +α

′
3(x

′o
3 − x ′+3 ) + (π

′o − θ ′+)p′+3 = 0 (13)

α1(x
o
1 − x+1 ) + 3(α1 +α2 +α3)(x

o
C − x+C ) + (µ

o −λ+) = 0 (14)

α′1(x
o
1 − x+1 ) + 3(α′1 +α

′
2 +α

′
3)(y

′o
C − y ′+C ) +α

′
3(x

′o
3 − x ′+3 ) + (π

′o − θ ′+) = 0 (15)

Since x+1 = e1, x+C = eC , y ′+C = eC , x ′+3 = e3 (we assume that we are in the Perfect-

Foresight Equilibrium), we can substitute e1, eC , eC and e3 for x+1 , x+C , y ′+C and x ′+3 , respec-

tively. After this, multiply (14) by p+1 , subtract the result from (12), and eliminate terms

equal to zero:

α1(1− p+1 )(x
o
1 − e1) + (α1 − 3(α1 +α2 +α3)p

+
1 )(x

o
C − eC) = 0.
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Do the analogous for (13) and (15), taking into account that x o
1 = e1 since agents cannot

trade asset 1 in round 2:

(α′3 − 3(α′1 +α
′
2 +α

′
3)p

′+
3 )(y

′o
C − eC) +α

′
3(1− p′+3 )(x

′o
3 − e3) = 0.

Formally, we have obtained the same equations as in the proof for the case without infor-

mation release; see Equations (8) and (9). The remainder of the proof therefore proceeds

as before.
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INSTRUCTIONS	
	

Summary	

You	 will	 trade	 ‘inputs’	 (wood,	 steel,	 and	 plastic)	 in	 an	 online	 market	 with	 other	

participants.	The	goal	is	to	collect	inputs	which	will	let	you	produce	Widgets.	You	should	

try	to	produce	as	many	Widgets	as	possible	because	your	earnings	will	depend	on	it.	You	

will	have	access	to	a	spreadsheet	which	tells	you	how	many	Widgets	you	can	get	for	a	

given	amount	of	wood,	steel,	and	plastic.	

Plastic	is	a	special	input	because	it	can	be	used	to	replace	wood	or	steel	in	the	production	

of	Widgets.	

Steel	can	be	traded	for	plastic	in	the	‘steel	market’	and	wood	can	be	traded	for	plastic	in	

the	‘wood	market’.	You	cannot	trade	steel	and	wood	for	one-another	directly	but	must	

trade	through	plastic.	So,	plastic	acts	as	“cash”,	and	we	will	often	refer	to	it	as	cash.	

This	game	will	be	replicated	several	times,	switching	between	situations	where	you	can	

simultaneously	trade	in	the	steel	and	wood	markets,	and	situations	where	you	must	first	

trade	in	the	steel	market	and	then	in	the	wood	market.	

	

	

Online	Platform	

In	this	experiment,	you	are	asked	to	trade	with	other	players	online	through	a	platform	called	

flex-e-markets.	You	can	access	the	platform	by	typing	http://www.flexemarkets.com	into	your	

browser.	Once	on	the	site,	click	‘sign	in’	on	the	top	right	corner	of	the	page.	On	the	sign-in	page,	

you	will	need	to	type	the	account	name	‘smiley-chum’	in	the	‘Account’	field.	Your	unique	email	

and	password	will	be	provided	to	you	on	a	separate	piece	of	paper.	Type	your	unique	email	in	the	

‘E-Mail’	field	and	your	unique	password	in	the	‘Password’	field.	Click	sign	in	once	this	has	been	

done.	

	

Trading	Game	

In	the	trading	game,	the	aim	is	to	trade	with	other	participants	to	collect	inputs	called	steel,	plastic,	

and	wood.	 These	 inputs	 are	 used	 to	 produce	 ‘Widgets’.	 The	 number	 of	Widgets	 you	 produce	
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determines	your	performance	(see	performance,	below).	You	will	have	access	to	two	markets:	

the	steel	market	where	you	can	trade	plastic	for	steel,	and	the	wood	market	where	you	can	trade	

plastic	for	wood.	Note	that	steel	and	wood	cannot	be	traded	directly	for	one	another,	but	only	

through	plastic.	Plastic	does	not	have	its	own	market.	So,	plastic	acts	as	cash,	and	will	be	called	

cash	in	flex-e-markets.	

Additionally,	plastic	is	a	versatile	input	and	can	replace	either	wood	or	steel	to	produce	Widgets.	

Plastic	therefore	affects	production	of	Widgets	in	two	ways:	directly	(because	part	of	the	widget	

is	made	of	plastic)	and	indirectly	(because	using	plastic	obviates	the	need	to	use	steel	or	wood).	

Therefore,	steel	and	wood	should	in	general	be	worth	less	than	half	as	much	as	plastic	because	

plastic	is	a	more	flexible	input	in	producing	Widgets.	That	is,	the	price	of	steel	and	wood	in	terms	

of	plastic	(cash)	should	generally	be	less	than	0.5.	

	

Sessions	
Once	you	have	signed	in,	you	will	see	two	marketplaces	called	‘InputsForWidgets--Practice’	and	

‘InputsForWidgets-Real’.	InputsForWidgets-Practice	is	a	practice	market	which	will	give	you	time	

to	get	used	to	trading.	 InputsForWidgets-Real	 is	 the	market	where	the	real	 trading	will	occur.	

Within	this	marketplace	we	will	run	as	many	sessions	as	we	can	in	the	allotted	time.	The	sessions	

will	be	of	two	distinct	types:	

	

1. The	 first	 type	 of	 session	will	 be	 referred	 to	 as	SIMULTANEOUS.	 In	 the	 simultaneous	

sessions,	you	will	be	allowed	to	trade	in	both	markets	(steel	and	wood)	at	the	same	time.	

Each	session	will	last	at	least	10-minutes.	

2. The	second	type	of	session	will	be	referred	to	as	SEQUENTIAL.	Sequential	sessions	will	

be	broken	into	two	periods	which	will	last	at	least	5	minutes	each.	In	the	first	period,	you	

trade	ONLY	in	steel.	In	the	second	period,	you	trade	ONLY	in	wood.	Note	that	you	will	be	

penalised	if	you	trade	in	a	restricted	market	(e.g.	if	we	are	in	the	first	period,	where	

the	wood	market	is	closed,	any	trade	you	make	in	the	wood	market	will	reduce	your	final	

payment	by	$2.00).	

	

We	will	start	with	a	number	of	sequential	sessions	and	then	switch	to	simultaneous	sessions.	At	

the	end	of	each	session,	we	will	record	your	performance	for	that	session	and	reset	your	holdings.	

Please	note	 that	before	we	begin	a	new	session,	you	should	 refresh	 the	browser	 so	 that	your	

holdings	update	accordingly.	(You	may	want	to	do	the	same	during	trading	if	you	notice	that	your	
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holdings	do	not	update	correctly	after	a	trade.)	

Performance	

Your	performance	is	based	on	the	number	of	Widgets	you	produce	–	the	more	Widgets	you	make,	

the	more	money	you	earn.	As	you	increase	one	type	of	input,	however,	its	effect	on	the	number	of	

Widgets	decreases.	Plastic	has	more	of	an	effect	because	it	is	at	once	an	input	in	its	own	right	and	

it	can	be	used	to	replace	wood	or	steel.		

You	will	be	given	access	to	an	online	spreadsheet	(see	separate	piece	of	paper)	that	calculates	

your	performance	based	on	the	number	of	inputs	you	currently	hold.	The	performance	calculator	

also	allows	you	to	see	how	your	performance	will	change	if	you	execute	a	specific	trade.	You	will	

be	given	sufficient	time	to	get	familiar	with	the	performance	calculator	during	the	training	period.	

The	performance	calculator	can	be	accessed	by	typing	the	link	under	‘Performance	Calculator’,	

on	the	piece	of	paper	with	your	unique	email	and	password,	into	your	preferred	web	browser.		

Your	payment	will	be	$20	plus	the	number	of	Widgets	you	produce	in	1	session	that	we	

will	 choose	 at	 random	 at	 the	 end	 of	 the	 experiment.	 That	 is,	 each	 Widget	 you	 produce	

translates	into	one	(1)	dollar.		

We	 recommend	 that	 you	 open	 the	 performance	 calculator	 and	 the	 marketplace	 next	 to	 one	

another,	so	that	you	can	save	time	switching	back	and	forth	during	the	experiment.	

	

Trading	

Trading	takes	place	as	follows.	You	submit	limit	orders:	orders	to	buy	a	chosen	number	of	inputs	

at	a	chosen	price	(or	lower),	or	to	sell	a	chosen	number	of	inputs	at	a	chosen	price	(or	higher).	

Transactions	take	place	from	the	moment	a	buy	order	with	a	higher	price	crosses	a	sell	order	with	

a	lower	price	or	the	other	way	around.	All	trade	occurs	at	the	price	specified	by	the	best	standing	

order.	In	other	words,	if	a	trade	occurs,	the	price	of	the	earlier	best	order	determines	the	price.	

Orders	at	a	better	price	execute	first.	Given	a	price,	orders	arriving	earlier	execute	first.	Orders	

remain	valid	until	you	cancel	them	or	the	marketplace	closes.	You	will	be	given	sufficient	time	to	

practice	submitting	and	cancelling	orders.	
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Figure 5: Trading Interface Snapshot

There is a market for steel (top) and wood (bottom). The bottom right displays participant settled

holdings (assets they currently hold) and available holdings (which takes into account standing orders).

There is no market for cash (plastic) since it is the numeraire. Participant holdings of cash are displayed

to the bottom right. There is a slider which allows participants to select a price at which they wish

to trade either wood or steel, ranging from $0.00 to $1.00, in $0.01 increments. There is a switch

which participants click to change between the sell and buy side. Orders are limit orders, that is,

participants select the number of units and the price at which they are willing to trade. Orders are

executed on a price-time priority, that is, standing orders at the best price are executed first. If there

are several orders at the best price then the longest-standing order is executed first. To the left of

the “submit” button is the (still empty) book of orders, to the right is the (empty) list of past trans-

actions. More information on the trading interface can be obtained from http://www.adhocmarkets.com.
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Figure 6: Online Spreadsheet Aid to Determine Production of Widgets as a Function
of Inputs

Example of the performance calculator which helped participants trade. The “Initial Holdings” section

was fixed and could not be altered by participants. The “Current Holdings” section allowed participants

to determine the performance of their current holdings. The “Possible Future Trades” section allowed

participants to input a buy/sell order for a chosen number of steel or wood units at a chosen price. The

“Post-Trade Holdings” section showed participants how their holdings and performance would change if they

executed the trades specified in “Possible Future Trades.” The “Perf. Change” showed participants whether

the trades specified in “Possible Future Trades” would increase or decrease their overall performance.
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