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We consider the lot-sizing discrete problem of a single machine whose yield is uniformly distributed. We assume that the customers’
demand is rigid, i.e. all demand must be satisfied. The costs involved are a setup cost paid each time a run is initiated plus a unit
variable cost per unit produced. No salvage cost is associated with extra or defective units. We prove that there exists an optimal
sequence of lot-sizes that is strictly increasing in the demand levels and therefore an optimal lot-size that is at least as large as the
demand level. These properties have been proved in the literature only for binomial yields. We also provide an extremely simple
algorithm to compute the optimal lot-sizes. Moreover, we show that the cost function is strongly robust in the lot-size: foranye > 0
we develop a procedure that generates a (usually large) class of policies whose relative error is bounded by €.

1. Introduction

This paper deals with the problem of determining the
optimal lot-size for a single-machine production process
with discrete random yield. We assume that demands are
rigid, i.e. all of the quantity ordered must be supplied.
Thus, for a given lot of size N, the yield (the number of
non-defective items) is a random variable. If the realized
yield is less than the current demand, an additional run
will be required. We note that the yield may be deter-
mined only upon termination of the production of the
whole lot.

The costs involved are a setup cost « paid each time a
run is initiated plus a variable production cost 3 paid for
each item produced. Defective items and extra good items
are assumed to have no value. (Such a situation may arise
in industries where the customer provides an exact and
unique specification of the product configuration and the
chance that successive customers will require a product
with exactly the same characterizations is negligible.) To
simplify notation we assume without loss of generality
that 8 = 1: thus the monetary basic unit is chosen as the
unit production cost.

The objective is to determine a production policy that
minimizes the expected total cost. For a given demand D,
a production policy is defined by a sequence of lot-sizes
{Ng}J_ . Lot-sizes that are too large may cause unne-
cessarily high production costs. On the other hand, too
small lot-sizes may result in high costs due to frequent
setups. Similar considerations arise while determining the
optimal order size in “procurement problems. In such
models the uncertainty is related to the demand process.
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In single-period models one can assume that either a
penalty cost for backlogging or shortages is due or,
alternatively, a service-level constraint is imposed. The
rigid demand environment corresponds to a 100% ser-
vice-level constraint. The underlying assumption of ran-
dom yield with rigid demand models is that the machine
setups as well as the production process do not consume
much time; thus a period is sufficiently long to ensure
meeting the whole demand on time. Although procure-
ment problems have been extensively studied and several
types of model were investigated, only a few results are
known about production lot-size with random yield,
especially in the context of rigid demands.

In Section 2 we present the general recursive formula
for general discrete yield distributions and we summarize
the few known results in this field. In Section 3 we discuss
and thoroughly analyze the uniform yield model. In
Section 4 we show that the cost function is extremely
robust in the lot-size, and producing non-optimal lots
may cause a small increase in the expected cost. Section 5
concludes the paper with an experimental study that
demonstrates the robustness of the cost function.

2. The general discrete formulation

The lot-sizing problem with general discrete yield distri-
bution can be formulated by a set of recursive minimiza-
tion problems. However, in the general case, a search
must be conducted to solve each of the minimization
problems. Such a search might be time-consuming and
thus the whole procedure might be ineffective for large



626

demand levels. Therefore it is extremely important to find
structural properties of the optimal solution that may
substantially reduce the number of different lot-sizes that
should be scanned by the search procedure at each
recursion step. We first present the basic notation and
the general recursive formula:

D demand level.

N lot-size; Np represents the
optimal lot-size for demand
level D.

Yy yield; a random variable

that represents the yield out
of a lot of size N.

the probability of obtaining
a yield of size y out of a lot
of size N. It is natural to
assume in this context that
P(y,N)=0fory>N.
expected cost to fulfill a de-
mand of D units, if a lot of
size N is produced whenever
the outstanding demand is D
and optimal lot-sizes are
produced whenever the out-
standing demand level is be-
low D.

the optimal expected cost of
fulfilling a demand for D
units.

P(y’N):P(YN

I
=

Vp(N)

VD = mm{VD(N) . NZ 1}

The recursive formula for general discrete models is

D—1
Vb(N) = a+ BN+ PO, N)Vp(N)+ Y P(y,N)Vp_,,

y=1

or equivalently (taking 3=1),

D1
a+N+ > Ply,N)Vp_,

— W

Vb(N) = 1 — P(0,N)

Let also Np €argmin{Vp(N): N > 1}. As mentioned
above, the main difficulty in computing Np when no
information about the function Vp(N) is available is that
essentially all Vp(N) values for N > | up to an N that is
sufficiently large must be computed. This paper investi-
gates the structure of optimal policies in the uniform-
yield case. The only additional non-trivial discrete yield
distribution for which some structural properties of the
optimal solution were proved is the binomial one, i.e.

o.M = (N)pa-p" o osysw

In this model each unit produced has a probability p to
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meet the requirements independently of the others. In-
deed, Beja (1977) considers a more general model where
the ratio between the unit variable cost and its success
probability is constant. He proved that (1) Np is strictly
increasing in D, which also implies that Np > D and (2)
that Vp(N) is quasi-convex in N. As a result the search for
Np should be performed over N > Np _ | up to the first
integer for which Vp(N) < Vp(N + 1).

Beja (1977) and Grosfeld-Nir and Gerchak (1991) have
noticed that general distributions fail to exhibit simple
properties such as Np > D (the optimal lot-size is at least
as large as the demand level) or Np _ | < Np (optimal lot-
sizes are non-decreasing in the demand level). Beja (1977)
has proved these properties for the binomial yield dis-
tribution indirectly, via a Markov decision model. Below
we investigate yields that are uniformly distributed and
we show that these properties hold also for the uniform
yield model: there exists an optimal sequence of lot-sizes
that are strictly increasing in the demand level. Moreover,
no search is required in the evaluation of Np; Np is given
by a simple expression of V', V>,..., Vp _ .

Grosfeld-Nir and Gerchak (1991) investigate the func-
tion Vp as a function of the setup cost parameter « for
general discrete yield distributions and proved the next
lemma (see Theorem 1 in their paper) which we use later.
In order to express the dependence of Vp(Vp(N)) in o we
may write instead Vp{a)(Vp(N, a)).

Lemma 1.

(a) the function Vp(«) is piecewise linear increasing and
concave in o.

(b) the slope of Vp(a) at any o where the function is
differentiable equals the expected number of setups for that
a.

Another result that we use in the sequel appears in
Theorem 2 in Grosfeld-Nir and Gerchak (1991); see
Lemma 2 below. This lemma deals with general yield
distributions for which the expected yield is proportional
to the lot-size, as for example the binomial and the
uniform distributions.

Lemma 2. If a=0 and for some constarit w,
0<w< ], E(Yy)=wNVN, then any lot of size N,
N € {l,...,D} is optimal for demand level D, and more-
over Vp = D/w.

Additional relevant literature includes Klein (1966)
and Sepheri et al. (1986), which provide heuristics for
the binomial yield model. Two continuous yield models
have also been studied, both under the assumption that the
lot-size is at least as large as the demand level. (1) White
(1965) developed a successive approximation algorithm
for stochastic proportional yields, i.e., Yo = QX, where
Q is the lot-size, Y the respective yield and X'is a random
variable independent of Q that assumes values in between
zero and one. (2) Grosfeld-Nir and Gerchak (1990)
obtain an explicit solution for the uniform yield case.
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For a thorough review on random yield and list of
references see Yano and Lee (1995) and Grosfeld-Nir
and Gerchak (1991).

3. The uniform model

The discrete uniform yield with P(y, N)=1/(N+1) for
0 <y < N is mentioned in Grosfeld-Nir and Gerchak
(1991) and is explored herein. The binomial distribution
may be viewed as the extreme case of a production
process where the quality of one item is independent of
the others. In the uniform distribution case the prob-
ability of one item’s being defective does depend on the
history of the process, i.e. the quality of the items pre-
viously produced in the same run. The uniform distribu-
tion possesses the following properties.

(1 The dlstrlbutlon is symmetric around the mean.

(2) Zy < PON)(= probablhty of obtalnmg at least k&
good items from a lot of size N) and Z} _ok P(y,N) (=
probabxhty of getting at least k defective items from a lot
of size N) are increasing functions of N for any k,
0 < k < N. In other words, the number of good and
defective items tends to increase as the lot-size increases.

The following equation is obtained by substituting the
uniform distribution into (1):

+N ifN<D-1, ()

Vp(N)

a+l+—=t LN ifN>D-1. (2b)
In Theorem 1 we prove that there exists a minimizer
Np of the function Vp(N) that also minimizes the follow-

ing function fp(N):

D-1
fo(N)=a+1+(a+ Y V)/N+N, N>1, (3)
i=1

and, moreover, Np > D.

In view of the above results, Np can be easily com-
puted as follows: consider the function g : N — ® (where
N denotes the set of positive integers) g(N) =0/N+ N
and extend its definition over the positive real numbers so
that g : Rt — R, g(x) = 6/x + x. The function g is con-

vex and attains its minimum at Xx* = V. Also,
g(yx*) = g(x*/v) = g(x*)/e(v), where
e() =2/(v+7v") (4)

(this function was also used by Roundy (1985)). The
function e(y) is strictly quasi-concave, satisfies
e(v) = e(y7!) and achieves its maximum at y = 1. From
Roundy (1985) it follows that the unique integer N*
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satisfying the following inequalities is an integer optimi-
zer of the function g:

N (N — 1) < x* = V0 < /N(N* +1).

(The function g may attain its minimum at two points if 6
equals the product of two consecutive integers: each of
these integers is a minimizer of the function g.)

Note that the unique integer satisfying

D—1
a+ Y Vi< /NN +1) (5)

i=1

NN —1) <

is an optimal solution for fp(N) (defined in (3)). If fp(N)
is minimized at two points, then N* is its greater mini-
mizer. In this section we show that N* is also a minimizer
of Vp(N). The following propositions will be helpful in
proving Theorem 1.

Proposition 1. Suppose that Np, a minimizer of Vp(N),
satisfies Np > D; then

fD(ND) min {fD

where fp(N) is defined in (3).
Proof: Assume by contradiction that Np > D but for any
minimizer Gp of fp(N), Gp < D. Then

YN > 1},

D-—-1
Vp(Gp) = a+ 1+ (a+ Z V;)/Gp + Gp
e
<a+14( a+Z )/Gp + Gp
i=1
= fp(Gp) < fp(Np) = Vp(Np) = Vp.

(The weak inequality follows from V; being non-negative,
and for the strict inequality note that Gp is a global
minimizer of fp where Np is not (according to our initial
assumption). The third equality follows because the
function fp(N) coincides with the function Vp(N) for
N > D.) Thus, in contradiction to the proposition’s as-
sumption, Gp < D is a better lot-size than Np for demand
level D. We conclude that one of the minimizers of the
function fp is greater than or equal to D. Since the
functions fp(N) and Vp(N) coincide for N> D —1, Np
also minimizes fp. [ ]

Proposition 2 states that if the optimal lot-size is not
smaller than the demand level for two consecutive de-
mands D — | and D, then the respective optimal lots are
strictly increasing in D.

Proposition 2. Let Np _ 1 and Np be the greatest optimal
lot-sizes for Vp _ | and Vp respectively. If Np 1> D —1
and Np > D, then Np > Np _ .

Proof: In view of the fact that the functions fp(N) and
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Vp(N) coincide for N > D — 1 then, according to (5) and
Proposition 1, we obtain the following inequalities:

D-2

‘Q+ZViZND—l(NDAI_1); (a)
i=1
D1
a+ Z V: < ND(ND+ 1); (b)
i=l
D1 )

ND(ND+1)>01+ Z V,’ZND_l(ND_l—l)'i'VD,]

i=1

IND_l(ND_1—1)+Ot+1+ }
D-2

o+ Z V,'
i=1

— =1 4N, J
Np - T ©

>Ny +Np_i+a2Np ((Np_i+1).

(In (c), the first inequality follows from (b) and the second
and third from (a).) As a result we conclude that
Np > Np_,. [ |

The next proposition states that if the optimal lot-size is
at least as large as the demand level for two consecutive
demands D — 1 and D, then increasing the demand from
D — 1 to D increases the optimal cost by at least two
monetary units. Note that in order to increase the ex-
pected yield by a single unit, two additional units have to
be produced, causing the total variable cost to increase by
two.

Proposition 3. Under the assumptions of Proposition 2,
Vp—Vp_12>2.

Proof: In view of Proposition 2 and (2), Np_ > D —1
and Np > D we obtain Np > Np_; and

D-2
a+ Z V,'

+N _{;’
P Np

D -1
VD_VD__l:;'

Np_q;.
Np +Dl}

In the proof we distinguish between the cases
Np=Np_(+land Np=Np_ |+ A, A>2.

Case 1: it is sufficient to show that

a+z

i=1

/ND—- a-{—z

i=1

/(Np—=1)>1,

or, equivalently, that (Np — )Vp_| — (a+ Z, g , Vi)
> Np(Np — 1). By expressing Zi: Viinterms of Vpp _
we obtain the desired result:
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D-2
(Np=D)Vp_1—(a+ Y V)
i=1

=(Np—-1)Vp_1—(Vp_
— (Np = 1))(Np = 1)
=(a+1+Np—-1)(Np-1) >
Np(Np —1).
Case 2: in that case it is sufficient to show that, for A > 2,

(a+z 0‘+Z

i=1 i=1

1—-0(——1

i)/Np > /(Np— A

Here we use the following relations that hold according to
the definitions of Np | and Np:

D-2
04+Z V,’<ND_1(N1)_1+1)=
i=1

(Np = A)(Np — A+ 1)

and

D-1
a+ Y Vi>Np(Np-1).
i=1

Thus we conclude that

a+EV

i=1

Np —A

(Np —A)(Np—A+1)

—Np—A+1
Np— A b +

D1
o+ V,‘
Np(Np — 1) < i§1

<Np-1=
< Np Np < Np

We are now prepared to prove the main theorem of the
paper, which states that the optimal lot-size for the uni-
form yield case is no smaller than the demand level D and
is therefore (see Proposition 2) also strictly increasing in
D.

Theorem 1.

(@) Vp(1) > Vp(2) > ... > Vp(D) for D > 1.

(b) There exists an optimal sequence of lot-sizes {Np}p - ,
such that Np > D. B
Proof: we first note that (b) is a direct consequence of (a).
The proof is by induction on D. For D = 1 the theorem
holds trivially. For D =2 note that, in view of the
definition of Vp(N) in (2), V>2(1) > V»(2) if and only if
a+ Vy>2, which holds trivially because V; >
1 + Ny > 2. We shall prove that the theorem holds for
D > 3. We now assume by induction that V;(k) is non-
increasing for k = 1,...,i,i < D — 1 and therefore there
exists an optimal sequence N; > ifori < D — 1, where N;
is the greatest optimal lot-size for demand level i. We
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shall prove that the theorem holds for i = D as well. We
first show that Vp(k) > Vp(k+ 1) fork=1,...,D - 2:

k+1

1
2150 - 1

i=1

Vo(k) = Vilk + 1

k
Z Vp_i—kVp_r_1—k(k + 1)

_i=1
k(k+1)

(The first inequality follows because o/k > o/(k + 1).) Itis
sufficient to show that the numerator of the last expression
is non-negative. But according to the induction’s assump-
tion and Proposition 3, ¥;— V;_{ > 2 for i < D — 1 thus
we can write Vp_gy; > 2(+1) + Vp_x_1 for
j=0,1...,k— 1. Therefore;

k k-1 k-1
ZVD—I‘: Z Vp—k+j > Zz(/+1)+kVkaA1
j=0 ico

i=1

k
=23 j+kVp k1 =k(k+1)+kVp_ k1.
j=1
which proves that V(1) > Vp(2) > ... > Vp(D —1).
To terminate the proof it remains to show that
Vp(D - 1) > Vp(D). However, fork = D — land k = D,

Vpk) =a+ 1+ a+z

i=1

i)/ k+k. (6)

Note that according to Lemma 1 the functions V; are
piecewise linear increasing in «, and therefore by (6)
Vp(D — 1) and Vp(D) also have these same properties.
From (6) it is easy to see that if both V(D — 1) and
Vp(D) are differentiable in o then

9
5 VoD~

d

1) > 5o Vp(D).
In view of Lemma 2 at o= 0 both functions coincide, i.e.
Vp(D — 1) = Vp(D). Since both functions are piecewise
linear increasing in a with the first having a slope at least
as large as the second at any « where the functions are
differentiable, we conclude that Vp(D — 1) > V(D) for
any a > 0. Thus there exists an optimal lot-size Np for
demand level D such that Np > D. [ ]

The next theorem summarizes the results of Theorem 1
and Propositions 1,2,3:

Theorem 2.

(a) There exists an optimal strictly increasing sequence of
lot-sizes {Np}p - -

(b) The optimal expected cost Vp can be calculated recur-
sively from:
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D—-1
VD:/rVnénl{a—i_ 1+ (a+ ’Z:l V,-)/N—I—N}.

(c) An optimal strictly increasing sequence {Np}p | can
be obtained by the inequalities N

D-1
Np(Np—1)<a+ Y Vi< Np(Np+1).
i=1

This sequence defines the sequence of the greatest optimal
lot-sizes.

Next we present a recursive algorithm for computing
the sequence of greatest optimal lot-sizes {N;}, . ; .p. To
simplify the presentation, when saying that 6 is rounded
to the ‘nearest’ integer we mean that 6 is rounded to [4] if
6/16] < [0]/6 and @ is rounded to [6] otherwise. (By
convention the ‘nearest’ integer to 0 is 1.) As can be easily
verified, the algorithm’s complexity is linear in D with an
extremely small coefficient.

Algorithm OPT-LS
begin

Vo:=0;
Fori=1,...,Ddo begin
round(Oz—FZ'_l )02
Vie=a+ 1+ (a+)2

to the ‘nearest’ integer N;;
i l j /N,‘ + Ni

end ;
end.

4. Intensitivity of the cost function for non-optimal lots

In this section we shall show that the single machine lot-
sizing problem with uniform yields and rigid demand is
robust in the sense that reasonable deviations from the
optimal lot-sizes at each demand level may cause only a
small increase in the total expected costs. In this section
we shall present the magnitude of these deviations.

The analysis of the cost robustness in the lot-size is
important because usually there exist other considera-
tions beside the expected production set-up and variable
costs that were modeled explicitly: for example, it is quite
common that certain raw materials are purchased in
batches, and breaking such a batch may cause damage
to the remaining material (chemical products). On the
other hand, it may happen that the amount of raw
materials at the plant is insufficient for producing optimal
lot-sizes: precious time may be wasted while waiting for
the raw material to arrive. The manager can greatly
improve his/her decisions by evaluating the increase in
the expected cost if production is started immediately
with the on-hand raw materials, in comparison with the
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cost of shutting down the machine or/and delaying the
supply date.

In the sequel we present, for each ¢ > 0, a procedure
that generates a family of policies with a relative error
bounded by e. The relative error of a policy is a measure
of its effectiveness and is defined as follows: for a given
problem let V represent the optimal expected cost and V'
the expected cost of a specific policy denoted by H; the
relative error of policy H, e, is defined as

e =" -mv.

In this section, we provide, for any given £>0, a
procedure that generates a family of policies defined by
a sequence of pairs of integers (Ly(¢), Uy(€)),d > 1: given
an initial demand D, any sequence of integers
{N}, < a<p> satisfying Ly(e) < N < Ugy(e), defines a
policy in this famlly that produces a lot of size N¥
whenever the remaining demand level is d. The relatlve
error of all these policies is bounded by ¢, i.e. the expected
cost of any of these policies does not exceed the optimal
cost by more than 100c%.

As mentioned earlier (see algorlthm OPT-LS), Np is
obtained by rounding (a + Zl_] Vi) %35 which we de-
note by Xp, to the ‘nearest’ integer. Thus Xp(Np) is the
continuous (integer) minimizer of Vp(N),N > D. Let
Vp=a+ 14 2Xp. Obviously Vp is the minimum of
the function Vp(N) when the integrality constraint is
relaxed; thus it is a lower bound for the optimal expected
cost for demand D, i.e. Vp < Vp. In our analysis we
compare the expected cost of the policies generated by the
procedure with either the optimal expected cost or with
the lower bound Vp. In all cases we show that
Vg /Vp<1l+e.

We first describe how to generate the sequence of pairs
(Lp(e), Up(e)),d > 1, for a given £>0. Note that the
infinite sequence of pairs depends only on ¢ and « and
is independent of the initial demand D. For a given D it is
necessary to compute only the first D pairs of the
sequence.

4.1. A procedure for generating a (1 + ¢ ) family of policies

Step 0. Let X (e) == (a+ (1 +¢) z;’_, V)2 1 <d< D
yi(e):=14¢+ (2 +¢)", and
vale) i = (14+€)*° +&%5, 2<d<D.

Step 1. For d=1,...,D calculate Ly(e) and Uyle) as
follows:
If N, € [Xd )/’yd( ) d(E)Xd(E)] then
La(e) : = [Xu(e) /va(e)] and
Ua(e) : = |va(e)Xal(e) |;
If Nj< Xule /'yd e) then Ly(e):=N; and
Uae) + = |vale) Xale) ]

Otherwise, Ly(g) : = Ny and Uy(e) : = Ng.
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Note that the above-defined procedure may allow lot-
sizes smaller than the demand level; see also Section 5.
Observe also that in the case that Np > vp(e)Xp(e) then,
since Np is the ‘nearest’ integer to Xp and Xp < Xp(e), it
must hold that Nj is also the ‘nearest’ integer to Xp(e).
Thus, since the ‘nearest’ integer to Xp(e), Np does not
belong to the interval [X;(¢) /v4(€), va(e) X4(€)]; this inter-
val must therefore be empty of integers. Below we prove
that the above family of policies has a relative error
bounded by ¢.

Theorem 3. The relative error of any policy H that is
defined by a sequence of lot-sizes N¥ whenever the remain-
ing demand level is d, d > 1,N € [Ly(e), Uy(e)], is
bounded by ¢.

Proof: Let H be a specific policy that employs a lot-size
NH whenever the remaining demand is / and assume that
H satisfies the theorem conditions. Let V# =
VH(NH NH, ... NH) be the expected cost of this policy
if the initial demand level is d,d > 1. We shall prove by
induction that V¥ /¥, <1+¢eford> 1.

For d=1 note that since X, = X((¢) = a®and N is
the ‘nearest’ integer to X, then either the interval
[X1/71(¢),v1(€) X)) contains N; or the interval is empty
of integers, thus L;(e) = U;(¢) = N;. The second case is
trivial because only the optimal lot-size is allowed. To
prove the first case, let N7 be an integer in the interval

[(X1/7m(€),v1(e)X1(€)], then

Vi Vl(NH) a+1+a/Nf+ N
V, -V, a+1+2X
a+ 142X /e(y(€)) -
< =1+e
Tiaar <l =1+e

(See (4) for definition of the function e( ). The second
inequality follows from the fact that X is the continuous
minimizer of a/X + X and o/X;| + X; = 2X|; also N¥
satisfies v, () < NH/X| < v(e); thus a/NH+N}’
< 2X;/e(y(¢)). The last inequality follows from the fact
that the maximum value that the function e( ) can assume
is 1. The last equality follows from the deﬁnmon of y1(e)
that satisfies the equality e(y,(¢)) = (1 +¢) ')

Suppose now, by induction, that for any demand level
d,d < D — 1, the relative error of the policies in the above
family is bounded by ¢: we shall prove correctness also for
d = D. Thus, according to the induction’s assumption,
for any specific policy H in the above family

VENE N Ny < (1 +e)Vy 1<d<D-1.

If N4 € [Xp(e)/vp(e),vp(e)Xp(g)], D > 2, then
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D1
r a+EVH
a+1+
) D1
- a+(l+e) > Vy
a+1+ =1

NH +NH}/VD

+ N V)

IA

a+1+

IA

a+1+2(1+¢)

IA

D-—1
at Y Vd}/I?D< I +e¢.

d=1

(The first inequality follows from the definition of V%,
and Vp < Vp, and it holds also for the case that N < D.
The second inequality follows from the mductlon s as-
sumption about V¥, d< D —1. The third inequality
follows from the fact that x = Xp(¢) is the continuous
mlmmlzer of the follow1n$ function (a+ (1+¢)
S0 Vo) /x4 x and vole) T < NE/Xp(e) < vole):
The fourth inequality follows from the choice of vp(e),
D > 2, for which e(yp(e)) = (1 + £)™*, and for the last
inequality use the definition of ¥p.)

In particular for a policy H with N¥, d<D -1,
satisfying the theorem’s conditions and N¥ = Np:
VH(NH ... N
Vp

- ]aND)

D—1

a+l+ @+ 3 VEY/Np+ Np
d=1

<

Vp

D-1
a+l+(a+(14+¢) Y Va)/Np+ Np
< D_ld:l <l+e.
a+l+(a+ Y Va)/Np+Np
d=1

The only case that remains to be considered is if
Np < [Xp(e)/vp(e)] and the interval [Xy(e)/va(e),
~v4(€)X4(€)] is non-empty: we have to show that for any
N such that Np < N# < [Xp(e)/vp(e)] VH(N N,

., N#)< (1 + €)Vp. However, it is easily seen that the
function VH(NH NH ... N¥_| x) is convex in x and
thus the set of real numbers for which the function value
is bounded by the constant (1 + £)Vp is convex. Since the
inequality holds for Np and the integers in the interval,
then it must hold for all integers in between. [ ]

In the next section we shall show that even for relatively
small €, the robustness property allows a lot of flexibility
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Table 1. v, (¢) and ~4(e)d > 2 for some selected values of e.

€ T (€) Ya(e);d > 2
0.01 1.152 1.105
0.02 1.221 1.151
0.03 1.227 1.189
0.04 1.326 1.220
0.05 1.370 1.250
0.06 1.412 1.275
0.1 1.558 1.365
0.2 1.863 1.542

in the selection of the lot sizes. The magnitude of the
width of the intervals is approximately determined by the
values v (¢) and v4(¢) for d > 2, which are given in Table
1 for some selected values of e.

For example, for £¢=0.05 and D=500 suppose that
Xp(e)=700: all integers in the interval [700/1.25, 700 x
1.25]=[560, 875] are legitimated lot-sizes for the first run.

5. Experimental study

In this section we report the results of an experimental
study that demonstrates the problem’s robustness. For
a=1, 50, 500 (note that the unit variable cost was
assumed to be 1), and ¢ values 1%, 5% and 10% we
report the optimal, the minimum and maximum lot-size
ford =12,...,10and d = 20, 30,..., 100 in Tables 2, 3
and 4 respectively.

As can be observed from the tables (and can be shown
from the algorithm definition) for any specific demand
level and « the intervals [L¥, UH] are nested; the interval
for small ¢ is contained in the intervals for larger . Also
for given demand level and ¢, the larger « is, the larger the
interval is. For given ¢ and « notice that the procedure
may provide a huge number of policies, which increases
as a and/or ¢ increase. For example, for D=10, e=5%
and o =1, the procedure generates 8640 different policies.
For D=10, =500 and £ = 1% we obtain 13 948 526 592
different policies!

It is also important to note that the policies generated
by the procedure for a given ¢ have a relative error that is
at most €. However, usually the effective relative error is
much smaller. For example, consider the problem with
D =10 and o= 50. The optimal sequence of lot-sizes (N,
Na, .., Nio)=(7, 11, 14, 16, 19, 21, 23, 25, 27, 29) and
Vio=108.7622. The following policy falls in the class of ¢
= 5% (NH NH ... NH)=(9,9, 17,20, 16, 18,19, 31, 34,
36). It is easy to see that the lot-sizes of this policy are the
lower or the upper bound of the intervals allowed, so we
would expect its expected cost to be relatively high. A
simple calculation shows that V{{,= 110.3742, which is
less than 1.5% above the optimal expected cost.

o
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Table 2. o=1
D Np LH ud
e=1% e=5% e =10%
1 1 1,1 1,1 1,1
2 2 2,2 2,2 2,3
3 3 3,3 3,4 3,4
4 5 55 4,5 4,6
5 6 6,6 57 58
6 7 7,7 6, 8 6,9
7 8 8,8 7,9 6, 11
8 9 9,9 8, 11 7, 12
9 10 9, 10 9,12 8, 14
10 11 10, 12 9,13 9,15
20 21 20, 23 18, 27 17, 30
30 31 29, 34 26, 40 25, 44
40 42 38, 46 35,53 32,59
50 52 47, 57 43, 66 40, 73
60 62 57, 68 51,78 48, 88
70 72 66, 79 59, 91 56, 102
80 82 75, 90 68, 104 63, 117
90 92 84, 102 76, 117 71, 131
100 102 93, 113 84, 130 79, 146

6. Summary and conclusions

This paper analyzes the optimal lot-sizing of a single-
machine production process with discrete uniform yield
under rigid demand. For any given demand level we
develop a linear time algorithm that generates the opti-
mal policy. In particular we show that the structural
properties of the optimal lot-sizing, proved for the reject
and allowance model, hold also for the uniform yield:

(1) there is a sequence of optimal lot-sizes {Np} - , that
is strictly increasing in D and therefore also Np > D for
D > 1; (2) the cost function is quasi-convex in the lot-size.
These two properties allow for an effective search of the
optimal lot-size for any given demand level.

We hope that the analysis in this paper will motivate
the research for deriving general conditions on the yield
distribution under which the above two properties hold.
Grosfeld and Nir (1991) state a conjecture regarding this

Table 3. =50
D Np Ly Ut
e=1% e=5% e = 10%
1 7 7,8 6,9 5, 11
2 11 10, 11 9,13 9, 15
3 14 13, 15 12, 17 11, 19
4 16 15, 18 14, 20 13, 23
5 19 17, 20 16, 23 15, 26
6 21 20, 23 18, 26 16, 29
7 23 21, 25 19, 29 18, 32
8 25 23,27 21, 31 20, 35
9 27 25, 29 23, 34 21, 38
10 29 27, 32 24, 36 23, 41
20 46 42, 50 38, 58 35, 65
30 60 55, 66 50, 77 47, 86
40 74 68, 82 61, 94 57, 105
50 87 80, 96 72, 111 67, 124
60 100 91, 110 82, 127 77, 142
70 112 102, 124 93, 143 87, 160
80 124 113, 137 102, 158 96, 177
90 136 124, 151 112, 174 105, 194
100 148 135, 164 122, 189 114, 211
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Table 4. o=500
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D Nbp i vt
e=1% £ =5% e =10%
1 22 20, 25 17, 30 15, 34
2 32 30, 35 27, 40 25, 45
3 40 37, 44 33, 50 31, 56
4 47 43, 51 39, 59 36, 66
5 53 48, 58 44, 67 41, 74
6 58 53, 64 48, 74 45, 82
7 63 58, 70 52, 80 49, 90
8 68 62,75 56, 86 53, 97
9 73 67, 80 60, 92 56, 103
10 77 70, 85 64, 98 59, 109
20 113 103, 125 93, 144 87, 161
30 143 130, 158 118, 182 110, 204
40 169 154, 187 139, 215 130, 241
50 193 176, 213 158, 246 148, 275
60 215 196, 238 177, 274 165, 307
70 236 215, 261 194, 301 182, 337
80 256 233, 284 211, 327 197, 366
90 275 251, 305 227, 352 212, 394
100 294 268, 326 242, 376 226, 421

general problem. Several researchers have tried to attack
this problem but still unsuccessfully.
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