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A nonstationary Markov chain is weakly ergodic if the dependence of the state distribution on the starting state vanishes
as time tends to infinity. A chain is strongly ergodic if it is weakly ergodic and converges in distribution. In this paper we
show that the two ergodicity concepts are equivalent for finite chains under rather general (and widely verifiable)
conditions. We discuss applications to probabilistic analyses of general search methods for combinatorial optimization

problems (simulated annealing).

Innumerable practical problems in areas such as
inventory management, queueing systems, main-
tenance, and manpower planning have been modeled
as Markov chains. In these discrete-time probability
models, the probability distribution of the state of the
system at a given stage may depend on the system’s
state at the previous stage. Most of these models use
stationary Markov chains, so that the transition prob-
abilities are time-homogeneous; this situation prevails
in spite of the fact that important nonstationarities
arise in many of the underlying real-world systems.
The popularity of the stationary Markov chain model
is explained by the fact that its long-run or steady-
state behavior is easily characterized and diagnosed.
To date, our understanding of the steady-state behav-
ior of nonstationary chains is considerably more
limited.

This paper provides tools for characterizing the
long-run behavior of finite, nonstationary Markov
chains in which the time-dependent transition proba-
bilities converge to a limiting matrix. We apply our
results to the analysis of simulated annealing methods,
which represent a general class of solution methods
for combinatorial optimization problems based on
randomized local neighborhood searches. Unlike the
more traditional deterministic search methods (heu-
ristics), this approach follows a random path in the
solution space that allows for occasional changes that
worsen the solution, so as to avoid becoming trapped
in local optima. In the course of the algorithm, the

method varies the probabilities of accepting specific
switches; the process may be described as a nonsta-
tionary Markov chain.

A finite nonstationary Markov chain is described
by a sequence of transition matrices {P(k)}7z-, defined

on a common state space {1, ..., N}. In period k, the
system moves from state / to state j with probability
P(k),.

A stationary chain with transition matrix P is called
ergodiciflim, .. (P}, — P;)=0foralli,jE{l,...,
N}, ie., if the effect of the starting state vanishes as
time progresses. A stationary chain is ergodic if and
only if it is aperiodic and has a single subchain, in
which case it satisfies a stronger convergence result: a
unique steady-state distribution = exists with
lim, .. P}, =m foralli,je{l,..., N}.

For nonstationary chains, the effect of the starting
state may vanish, while the products {P(1) -..
P(k)}i-, fail to converge. Thus we need to make
an essential distinction between two types of
ergodicity.

We write P“® for the product P(m) - .. P(k):

A nonstationary Markov chain is weakly ergodic if,
for each m, a sequence of row vectors =(m, k) exists
such that limy_... [P — z(m, k), ] =0forall i, j €
{1,..., N}

A nonstationary Markov chain is strongly ergodic if
a steady state distribution = exists with limy_... P
=m forallm=1landallijeE({l,..., N}.

Subyect classification: 568 nonstationary Markov chains, weak and strong ergodicity, applications to simulated annealing methods.
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In this paper we provide general conditions under
which these two ergodicity concepts are equivalent,
and we argue that these conditions will be satisfied in
all but the most contrived situations. As a side result,
we find that, under these conditions, = arises as the
limit of steady-state distributions associated with
{P(k)}%-1. The equivalency result implies a significant
simplification of strong ergodicity tests. Previous tests
for strong ergodicity usually required establishing
weak ergodicity as well as a convergence condition
with respect to a sequence {x(k)}7-, of left eigenvectors
of the matrices {P(k)}z-,. The latter condition is often
the most intricate part of the ergodicity test, especially
in the common case in which these eigenvectors can-
not be obtained in closed form. (Sufficient conditions
that establish strong ergodicity directly, without prov-
ing weak ergodicity, are rather restrictive; see, for
example, Isaacson and Madsen 1976, Chapter V.)

After establishing preliminary results in Section 1,
in Section 2 we derive equivalence conditions. In
Section 3 we apply our results to the analysis of
simulated annealing methods. Ideally, the sequence of
solutions generated by such a method converges with
probability one to the set of global optima. To verify
this property, one first needs to establish convergence
in distribution of the sequence of generated solutions;
in view of the prior observations, this approach re-
duces to verifying strong ergodicity of the associated
nonstationary Markov chain.

Ergodicity concepts for nonstationary Markov
chains were first introduced by Dobrushin (1956),
Hajnal (1956, 1958) and Mott (1957). Subsequent
results were obtained by a variety of researchers, in-
cluding Iosifescu and Theodorescu (1969), Paz (1963,
1971), Griffeath (1975) and Madsen and Isaacson
(1973). Isaacson and Madsen (1976, Chapter V) give
a comprehensive survey of most known results up to
1976. The study of backward products of convergent
sequences of stochastic matrices is closely related; see
Federgruen (1981) and the references therein.

The annealing concept seems to have been intro-
duced in statistical mechanics by Metropolis et al.
(1953). Recently, Kirkpatrick, Gelatt and Vecchi
(1983) and Cerny (1985) introduced the method as a
general solution approach for discrete optimization
problems. Their observations, reinforced by articles in
the popular press—see, for example, The Economist
(1984)—led to several successful applications to a
variety of problem areas; see Aragon et al. (1987) for
a review. Lundy and Mees (1985) and Romeo and
Sangiovanni-Vincentelli (1984) were the first to ana-
lyze the annealing method as a Markov chain defined
on the solution space. Their treatment is, however,
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restricted to the case in which the probabilities of
accepting specific switches remain constant through-
out the algorithm (i.e., the process is described by a
stationary chain). Geman and Geman (1984), Mitra,
Romeo and Sangiovanni-Vincentelli (1986), Hajek
(1985), Gidas (1985) and Gelfand and Mitter (1985)
analyze nonstationary implementations for the special
case of exponential acceptance probabilities (see Equa-
tion 8). (Gidas discusses a few closely related cases as
well.) Our results are used in Anily and Federgruen
(1985) to provide a full probabilistic analysis for
general implementations using general acceptance
probabilities.

1. Preliminaries

Following convention, we define the ergodic coeffi-
cient of a stochastic matrix P, denoted by «a(P), by
a(P) = min,; ¥, min(P,,, Py,). Weak ergodicity of a
nonstationary chain {P(k)}7—, is most easily verified
by inspecting the ergodic coefficients of blocks of
consecutive matrices in the chain.

Lemma 1. (see Theorem V.3.2. in Isaacson and Mad-
sen). Let {P(k)}%-, be a nonstationary Markov chain.
This chain is weakly ergodic if and only if for some
subdivision of P(1)P(2)P(3) - - - into blocks of matrices
[P(1)P2) - -- P(m)] - [P(m + DP(n, +2) - -+ P(m)]
[P(n1+ I)P(n1+2) P(n}+l)]

oo

Y a(Ptime)) = o where no = 0. (1)

J=0

Note that, in verifying (1), we need only identify a
sequence of lower bounds g(P“*%%+V) for which
B0 (P 0) = o,

As pointed out in the introduction, weak ergodicity
may fail to imply strong ergodicity.

Example 1. (see Example V.4.1 in Isaacson and Mad-
sen). Let

PQn—1) = [‘1’ (1)]

and

0 1
PQ2n) = 11 forn=1,2,3,....

" 2n 2n

Note that a(P®4?) = 1/2n so that {P(k)}i-,
is weakly ergodic. Note also by induction that
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P$%™ =1 for all k = 1, while
al 1
(1,2k)
= 1 —=J.
P =11 ( 2l>

Thus

lim P{;° = 0 - =
kl—zlr':lo " as kgl 2k

o0,
Thus,

lim (P()P(2) - PQk — DPQK)} = [8 }]

but
ll(im P(PQ2) --- PRk — NPRK)PRk + 1)

= {l{im P(HPQ2) - - P(2k)} lim Pk + 1)

L

thus showing that { P(k)}%-, fails to be strongly ergodic.
Of course it contains two converging subsequences.

The preceding example might seem to suggest that
the lack of strong ergodicity arises due to the periodic-
ity of lim,.... P(n). The following example (adapted
from example V.5.1 in Isaacson and Madsen) shows,
however, that the equivalence between weak and
strong ergodicity may fail even when lim,_,.. P(n) is
aperiodic.

Example 2. Let

0 1 - l l
1 | and T(n) = non
1

-~ 0

S(n) =

Xi—

For each n = 1, choose P(n) to be either S(n) or T(n).
Note that

lim P(n) = [é (1)]

n—o

and
a(S() = a(T() = =,

so that each such constructed nonstationary chain
{P(n)}5-1 is weakly ergodic (apply Lemma 1). By
appropriate choices of P(n), the products {P""}2,
can, however, be made into an oscillating sequence.
In particular, P{;” can be made less than % and

greater than % infinitely often.

It is interesting to note that the weak and
strong ergodicity concepts of a nonstationary chain
{P(n)}n-, are equivalent if P = lim,_,.. P(n) exists, has
a single subchain (as in Example 1), and is aperiodic
(as in Example 2).

Lemma 2 (see Theorem V.4.5 in Isaacson and Mad-
sen). Let {P(n)}i. be a nonstationary Markov chain.
If P(n) —» P as n —  where P is ergodic, then the
chain is strongly ergodic.

The nonstationary chains that arise in the analysis
of annealing methods (see Section 3) usually have
limit matrices with multiple ergodic sets, and Lemma
2 is thus inapplicable. Alternative tests for strong
ergodicity require verification of a convergence con-
dition with respect to a sequence {w(k)li=, of left
eigenvectors of the matrices {P(k)}z-,.

Forx€ R let [ x| =X, |x].

Lemma 3 (see the proof of Theorem V .4.3. of Isaac-
son and Madsen). Let {P(n)}n- be a weakly ergodic
nonstationary Markov chain. If there exists a corre-
sponding sequence of left eigenvectors

fr(n)n=

satisfying
2 In(n) = x(n+ 1) <o, 2)

then the chain is strongly ergodic, with lim,_... P{"™
= lim,,. w(n),, forallm= 1.

As such, it appears that Lemma 3 can be applied
only when a sequence {w(n)}n-, is known in closed
form. In the next section we show that condition (2)
holds in all but the most contrived situations. (Note
that, in Examples | and 2, the entries of the matrices
P(n) are allowed to vary erratically with the period
index n.) In addition, we give easily verifiable condi-
tions for (2) that do not depend on a closed form
representation of a sequence {x(n)}5-;.

2. Weak and Strong Ergodicity:
Equivalency Conditions

In this section we assume that P(n) is available as a
closed-form function of n. We first rephrase Lemma
3 in terms of continuous extensions of nonstationary
Markov chains. In particular, we show that condition
(2) is equivalent to the existence of a vector function
#(c) of bounded variation on (0, 1] with the property
that, for some sequence {c.}n=: | 0, #(c,) is a left
eigenvector of P(c,) = P(n) forall n = 1.

Copyright © 2001 All Rights Reserved
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To invoke the “bounded variation” property, we
need to extend the sequence {P(n)}n-; to a matrix
function of a variable defined on a bounded interval.
This approach leads to the following somewhat un-
usual definition of extensions of sequences:

Definition 1. Let {a(n)}7-, be a sequence with
a(n) € R™ for some m = 1. The (vector) function
a(e): (0, 1] - R™ is an extension of the sequence
if a(c,) = a(n) for some sequence {c.}r=), with
lim, .. ¢, =0.

As an example, for a given positive vector « € R”,
let the ith component of a(n) be specified as
a(n), = n~> for i = 1, ..., m. The function a(.)
defined by a(c), = ¢™ is an extension of the sequence.
(Take ¢, = n~! for n = 1.) We also recall the following
standard definition:

Definition 2 (see, for example, p. 98 in Royden
1968). A real-valued function fdefined on the interval
(0, 1] is of bounded variation if

Sup{g If(xl)_f(xl—l)l I X< X << X = 1

and lim x, = 0} <o, (3)

1—>00

Theorem 1. Let {P(n)}n-, be a weakly ergodic nonsta-
tionary Markov chain and let P(c) be an extension
corresponding to a sequence {Ca}u=: | O.

(@) Let 7(c) be a (vector) function of bounded varia-
tion in c, with #(c,) a left eigenvector of P(c,) =
P(n) for all n = 1. Then {P(n)}n=, is strongly
ergodic and lim,... P = lim.o 7(c), for all
l<si,jsNandallmz= 1.

(b) Let {x(n)}n-: be a sequence of left eigenvectors of
{P(m))n=1. If To=y | w(n + 1) — w(n)| < oo, then
some extension #(c) of {w(n)ln=1 is of bounded
variation.

Proof. (a) Immediate from the definition of bounded
variation and Lemma 3. (b) Consider the step function
#(c) = =(Lc™' 1) where Lx ] is the largest integer smaller
than or equal to x. Consider a decreasing sequence
{c,}=, with lim,_... ¢, = 0.

T | #(c) = #(em)] = 22 |w(Ler ) — m(leih D).

Let {n,]=, be the collection of distinct integers in
{Lc7! 3=, and note that {n,}, is a subsequence of the

positive integers. Hence,

;2 | 7(c.) — 7(c-1)]

M s

| w(n) = w(n-1)|

i
~N

< ;2 {l w(n) — w(n, — 1))

+ |w(n, — 1) = =(n, — 2)|
+ it |7y + 1) = ()|}

< 22 | m(n) — m(n — 1)] < .

This result verifies (2) for all »(-),forj=1,..., N.

The remainder of this section is devoted to identi-
fying simply verifiable sufficient conditions under
which a function 7(c) exists that is of bounded varia-
tion and for which #(c,)P(n) = =(c,), for some
{endn=1 1 0.

Example 3 shows, unfortunately, that it is insuffi-
cient to require that some extension P(c) of {P(n)}n-,
is of bounded variation.

Example 3. Consider the nonstationary Markov
chain

1 —e™" e

Pn)=| _,., ("% — ongin2 [ BT
esm<2> 1 — e7"sin >

Observe that the extension

1 — e—l/c e—l/c

—1cein2 | T _ irean2 | T
e~/ sin (2c> 1 — e Vsin <2c>

is of bounded variation on (0, 1]. (Note that dP(c)/dc
exists and is continuous on (0, 1] with lim,;, (dP(c)/
dc = 0. Thus P(c) is of bounded variation; see, for
example, Lemma 6, p. 101, in Royden.) The unique
left eigenvector w(n) of P(n) is obtained as the solution
of the following system of equations:

P(c) =

w(n) + w(n) =1,
(1 —en(n) + <e‘"sin2<le>)1r(n)2 = w(n)

Hence {w(n),}3=, = {[1 + sin’(nx/2)]"'};- alternates
between 1 and Y2 and condition (2), that Y5, | #(n)
— x(n + 1)| < o, fails to hold. Observe that this
example is all the more remarkable as each of the
entries of the matrix P(n) is an extremely smooth
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function of ». In fact each of the entries is expandable
as a Taylor series in n with infinite convergence radius.

The problem, in this example, arises due to the fact
that P(n),, and P(n),,;, and hence x(n)., have infi-
nitely many local optima in n. This connection is
explained by the following lemma.

Lemma 4. Let 7(c) be an extension of a sequence
{w(n)}n=1 that is continuously differentiable on (0, 1].
If 7(c) is asymptotically monotone (i.e., each compo-
nent has finitely many local optima) then #(c) is of
bounded variation on (0, 1].

Proof. There exists a constant ¢* > 0 such that #(c)
is monotone for ¢ < c¢*. In view of (3), it suffices to
show that #(c) is of bounded variation on [¢*, 1]. The
latter follows from #(-) being continuously differen-
tiable on [c*, 1] (see Lemma 6, p. 101, in Royden).

Alternatively, one may view the problem in Exam-
ple 3 as arising because ratios of pairs of entries of the
matrices {P(n)}.-, fail to be of bounded variation
(even though the entries themselves are).

We now focus on identifying easily verifiable con-
ditions under which bounded variation of an exten-
sion 7(c) can be proven. These conditions restrict the
choice of {P(c),: 1 < i, j < N} to specific classes of
functions while imposing a regularity assumption with
respect to the chain structure of the matrices P(c),
O<cs=sl.

Definition 3. A class F C C! of functions defined on
(0, 1] is a closed class of asymptotically monotone
functions (CAM) if

(a) fEF=f'€ Fand —f€ F;
(b) fgEF=(f+g)and (/- g) E F;and
(c) all f€ F change signs finitely often on [0, 1].

Definition 4. A class F of functions defined on (0, 1]
is a rationally closed class of bounded variation
(RCBYV) if

(@) f€ F= fis of bounded variation on (0, 1];

(b) fe F= —f€ F;

(© LgEF=(f+g)and (f- g) E F;and

(d) f, g € F with (f/g) bounded on (0, 1] = f/g is of
bounded variation.

Definition 5. A nonstationary Markov chain
{P(n)}=-, is said to have the regular extension P(.) if
a real number c* > 0 exists such that the collection of
subchains of P(c) is identical for all ¢ < c*. 4

A sufficient (though sometimes too restrictive: see
Example 1) condition for regularity arises when we
replace (4) by the assumption that {(i, j)| P(c),, > 0}
is identical for all ¢ < ¢*. (5)

Theorem 2. (Main result.) Let {P(n)};-, be a weakly
ergodic nonstationary Markov chain and P(c) a regu-
lar extension such that all entry functions P(c),
(1 <i,j=< N) belong to

(i) a closed class of asymptotically monotone func-
tions, or

(ii) a rationally closed class of functions of bounded
variation.

Then {P(n)}i_, is strongly ergodic. Moreover, for n
sufficiently large, each P(n) has a unique steady-
state distribution w(n) with lim,_,. =(n) = =* and
lim, .. P =x*foralll<i,j<Nandm= 1.
Proof. We first show that, for all ¢ sufficiently small,
P(c) has a unique subchain. In view of the regularity
of P(-), the only alternative is the existence of an
integer m and rwo sets of states, R, and R,, such that
both R, and R; are subchains of P(n), for all n = m.
But then lim, ... ¥,er, P = 1 for i € Ry, and
lim,_... ¥ ,er, P = 0 for i € R,, contradicting weak
ergodicity.

Thus, for all ¢ sufficiently small, let #(c) be the
unique steady-state distribution of P(c). Note that
#(c) may be obtained as the unique solution of the
following system of equations:

#c) = 2 Pe),7(c)y, i=1,...,N—1
J
N
Y =1
=1
Thus,
7(c)
1-P(c), - —P(C)v-11 —P(C)ns 0
—P(c)in-1 1 = P(C)v-1.n-1 ~P(Chnn—1 0

1 1 1

—

In view of Cramer’s rule, each component of #(c)
may thus be written in the form

O (c)
Q:(c)’
where both @, and (; are finite sums (and differences)

of finite products of the functions {P(c),; | < i,
J < Nj. If the latter are chosen from a RCBYV class, all

7?((:)1 =

Copyright © 2001 All Rights Reserved
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components of 7(c) are of bounded variation, and the
theorem follows from Lemma 3. If the functions
{P(c),; 1 < i, j< N} are chosen from a CAM class of
functions, the derivatives 7' (c), (i = 1, ..., N) may
be written as

#(c) = Q1 (c)Qa(c) — Qi(c)Q:(c)
' {Q:()f ’

where the numerator is, again, the difference of two
finite sums of finite products of the functions {P(c),, ;
1 <i,j< N}. Thus, #’(c), (1 < i < N) changes signs
finitely often on (0, 1], and =(c), is asymptotically
monotone and of bounded variation. The theorem
follows again by invoking Lemma 3.

The following proposition enumerates a number of
RCBV and CAM classes of functions. We first need
the following definitions.

Definition 6. A real-valued function fis an exponen-
tial sum in 1/c if it is of the form ¥"., Q,(1/c)e™",
with A, a given real number and Q,(-) a given poly-
nomial (j=1,...,n).

Definition 7. A real-valued function fis an exponen-
tial rational in 1/c if it is the ratio of two exponential
sums in 1/c. Note that the exponential rationals con-
tain the rational functions as well as the exponential
sums as subclasses.

Proposition 1. The following classes of functions de-
fined on (0, 1] are RCBV and CAM:

(1) the poiynomials (RCBV and CAM);,
(I1) the rational functions (RCBV and CAM);
(III) the piecewise rationals (RCBV), and
(IV) the exponential rationals (CAM).

Proof. The statements about (I)-(III) are immediate.
To verify (IV), we need only to check property (c) in
Definition 3, the other two properties being immedi-
ate. Substituting x = ¢!, we may write the derivative
of a rational exponential (with respect to x) in the
form

1Q) (x)eM*
{Zz @ (x)e )

with Q!(x), Q?(x) given polynomials and A;, A
(1 <j < n) given constants. In view of Lemma 4, it
thus suffices to prove that the sign of an exponential
sum Y%, 37, a,,x'e>* remains constant for x suffi-
ciently large. Assume, without loss of generality, that
AM=---=2Mandg,#0()= 1, ..., n). It is easy

to verify that
lim sign{ D 2 a,,,x’e*f"} = sign(ai »,).
X =1 I=1

Thus, if {P(n)};-, is a weakly ergodic chain with a
regular extension P(c) (¢ € (0, 1]) whose entries are
chosen from any of the above classes of functions,
then the chain {P(n)};-, is strongly ergodic.

3. Convergence of Simulated Annealing Methods

Consider a discrete minimization problem with N
feasible solutions numbered in ascending order of
their objective function values (f;, i = 1, ..., N).
Iterative search methods specify a neighborhood N, C
{1,...,N}foreachsolutioni(i=1,...,N).(Usually,
| N,| < N.) The classical deterministic methods start
with an arbitrary solution, and proceed to its lowest
valued neighbor, provided this switch results in a strict
improvement. The methods repeat this step until no
improving neighbor can be found, i.e., until they reach
a local optimum. Examples of such methods are the
interchange or greedy heuristics for the simple plant
location problem (Cornuejols et al. 1977), and the
r-opt methods or the Lin and Kernighan (1973) heu-
ristic for the traveling salesman problem.

The classical deterministic methods encounter two
major problems:

(i) the solution obtained is heavily dependent on the
starting solution; and

(ii) the methods often converge to inferior local op-
tima.

Simulated annealing methods randomize the pro-
cedure to overcome these problems, allowing for
occasional switches that worsen the solution. Assume
the current solution is i (1 < i < N). A specific neighbor
j € N, is generated with probability g,. The switch
(between i and j) is implemented according to a
positive acceptance probability a,, that depends on a
control parameter ¢ (i.e., &, = a,,(c)). In the course of
the algorithm, the method decreases this control pa-
rameter to zero according to a prespecified sequence
{c,)=-,. The acceptance probability functions satisfy
the following properties:

iff <f, (6)
ligl a,(c)=0 iff>f. )

a,(c)=1

Examples of frequently used acceptance probabilities
(Kirkpatrick, Gelatt and Vecchi; Lundy and Mees)
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are
a,(c) = e fi>f. ®)

A crucial element in designing a simulated anneal-
ing method is choosing a sequence {c,}i-, to ensure
convergence to the set of global minima. Let s, be the
solution generated at the nth iteration. Observe that
the sequence {s,}n—; is generated by a nonstationary
Markov chain with state space {1, ..., N}, and tran-
sition probabilities

&, a,,(Cn), JEN,
P,(n)= 1 - jEZN 8yay(Cn), J=1, (9)
0, otherwise.

Also, assume a global minimum that can be reached
from any initial solution (following a path through
successive neighborhoods). Thus, P(n) has a single
subchain for all #» = 1; let x(n) be its unique steady-
state distribution.

The following three properties (in order of increas-
ing strength) are desired for any annealing method:

(a) (Asymprotic independence of starting solution.)
The dependence of the distribution of s, with
respect to the starting solution vanishes as k — cc.

(b) (Convergence in distribution.) s, converges in
distribution.

(c) (Convergence to a global minimum.) The algo-
rithm converges to M, the set of global minima,
with probability one.

Note that the first (second) property is equivalent to
weak (strong) ergodicity of {P(n)}i.,. As Section 1
pointed out, the first property is usually verified easily
with the help of Lemma 1, as the following example
demonstrates.

Example 4. Consider a problem with four feasible
solutions, i.e., N=4. Let fi=0,a=1,=f, = 2.
Let Ny =N, = {3, 4} and N; = N, = {1, 2}. Consider
a simulated annealing method with acceptance prob-
abilities (8) and g, = V2 forjE€ N,(i= 1, ..., 4). Note
that a(P,) = e~%* for n sufficiently large. Thus, with
¢ = 2/log n, we have a(P,) = n~' and (1) is satisfied
with the choice #, = j, j = 1. Hence (a) holds.

The following corollary, immediate from Theo-
rem 2, shows that an annealing method converges in
distribution (property (b)) to «* =% lim,_,.. w(n) for
almost all reasonable acceptance probabilities, pro-
vided {P(n)};-, is weakly ergodic. Moreover, investi-
gating whether the algorithm converges to a global

optimum (property (c)) thus reduces to verifying
whether 3.y ¥ = 1. (Note that in P = lim,._.. P(n),
each local optimum may represent a subchain by
itself; thus, Lemma 2 cannot be applied.)

Corollary 1. Consider a simulated annealing method
with a given neighborhood structure {N,, i=1, ...,
N}, generation probabilities { g, }, and control sequence
{Caln=1. Assume {P(n)}n=, is weakly ergodic and let the
acceptance probability functions be chosen from a
RCBV and CAM family of functions. Then, the distri-
bution of s, converges to #* = lim,_,.w(n).

Anily and Federgruen (Theorem 3) derive an upper
bound on Prob{s, € M} (k = 1) that may be used in
formulating a stopping criterion. (Current implemen-
tations employ a variety of heuristic termination
rules.) This bound also provides insight into the tran-
sient behavior of the chain, as well as its convergence
rate.

Next, consider the exponential acceptance prob-
ability functions (8) and assume the generation
probabilities (g,,) are generated from a symmetric
matrix Q = (Q,,) satisfying

__9
gl_l 2[ Q1[ >

(In particular, (10) implies that the neighbor relation
is symmetric, i.e., j € N, & i € N,; (10) includes the
special case in which Q is a symmetric Boolean matrix
such that g, = 1/| N.|, i.e., the neighborhood relation
is symmetric and the generation probabilities are uni-
form). In a sequel paper (Anily and Federgruen), we
show the existence of two constants K; and K, such
that {P(n)}r, is weakly ergodic if ¢, < (K,/log n) but
fails to be weakly ergodic if ¢, = (Ky/log n) for n
sufficiently large. It is also easy to verify that ¥ ,ex
w¥ = 1 (see Lundy and Mees, and Anily and Feder-
gruen). In view of Theorem 2 or Corollary 1 we arrive
at the following conclusion.

JEN.. (10)

Corollary 2 (see also Anily and Federgruen, Theo-
rem 2(i)). Consider a simulated annealing method
with generation probabilities satisfying (10), and
acceptance probabilities (8). There exists a constant
K, such that the distribution of s, converges to ©* if
lim inf,_..{c,log n} = K;.

As pointed out in the preceding discussion, Lemma
I’s characterization of weak ergodicity is easily used
to verify weak ergodicity. It suffices to identify one
subdivision of P(1)P(2) --- into blocks of matrices
such that (1) holds. Disproving weak ergodicity
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through Lemma 1 is usually intractable since a viola-
tion of (1) needs to be demontrated for al/ possible
subdivisions of the chain. Theorem 2, on the other
hand, is often easily applied to disprove weak
ergodicity. Consider, e.g., Example 4; however, with
¢, = (1/2 log n) for n = 1. It is easy to verify that
lim inf,_. P%” = %, (I — 1/ > 0 since
Y2, (1/1?) < o, Corollary 1 and the fact that lim,
x(n) = (1, 0, 0, 0) implies that for this choice of
{c.}moy the chain {P(r)};-, fails to be weakly ergodic.

Finally, it is worth noting that the two existing
ergodicity concepts for nonstationary chains deal with
chains that asymptotically behave as “unichain”
systems. A “multichain” generalization of strong
ergodicity would be the existence of a matrix II
(not necessarily with constant rows) satisfying
lim,—... P = 11, for all , j. Future work should
address conditions under which this multichain ergod-
icity property holds.
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