SIAM J. COMPUT. © 1999 Society for Industrial and Applied Mathematics
Vol. 29, No. 1, pp. 327-335

THE SWAPPING PROBLEM ON A LINE*
SHOSHANA ANILY', MICHEL GENDREAU*, AND GILBERT LAPORTE?

Abstract. We consider the problem of optimally swapping objects between N workstations,
which we refer to as nodes, located on a line. There are m types of objects, and the set of object-types
is denoted by S = {1,...,m}. Object-type 0 is a dummy type, the null object. Each node v contains
one unit of a certain object-type a, € S U {0} and requires one unit of object-type b, € S U {0}.
We assume that the total supply equals the total demand for each of the object-types separately. A
vehicle of unit capacity ships the objects so that the requirements of all nodes are satisfied. The set
of object-types is partitioned into two sets: objects that may be temporarily dropped at intermediate
nodes before reaching their destination and objects that have to be shipped directly from their origin
to their destination. The objective is to design a route that starts and ends at the depot and a
feasible assignment of object-types to the route’s arcs so that the total distance is minimized. We
propose an O(N2) algorithm to compute the optimal solution for this problem.

Key words. the swapping problem, transshipment problem
AMS subject classifications. 05C12, 05C45, 05C40, 05C85

PII. S0097539797323108

1. Introduction. A set V of N workstations, which we refer to as nodes, is
located on a line. We are also given a set of m object-types S = {1,...,m}. Object-
type 0 is the null object. Each workstation v contains one unit of a certain object
a, € SU{0} and requires one unit of object b, € SU{0}. a, = 0(b, = 0) means
that no object is currently (required) at node v. For each object-type separately, the
total supply (i.e., the number of nodes currently containing that object-type) equals
the total demand (the number of nodes requiring that object-type). A vehicle of unit
capacity that starts and ends at node vp € V ships the objects from their initial
locations so that the requirements of the workstations are satisfied. The objective is
to design a feasible route of minimum length.

The set of object-types is partitioned into two sets S = Sy U S,,. Objects in Sy
may be temporarily dropped at intermediate nodes before reaching their destination,
while objects in S,, have to be shipped directly from their origin to their destination.
One of these two sets may be empty. Clearly, the optimal solution when some of the
objects may be dropped cannot be worse than in the case that S = 5,,.

The general swapping problem where the workstations are the nodes of an undi-
rected complete graph was studied by Anily and Hassin (1992). The authors show
that the problem is NP-hard and prove the existence of an optimal solution that
satisfies certain structural properties. They design two heuristics whose worst-case
bounds are 2.5. The proposed heuristics are based on the composition of the optimal
solutions to m + 1 matching problems, one for each object-type ¢ € S U {0}, where
nodes v with a, = i are matched with nodes w with b,, = i. This step results in a set
of disjoint cycles that are then patched into a single Eulerian tour. Except for Anily
and Hassin (1992) and the current paper, the literature confines itself to systems con-
taining one unit of each object-type, and moreover, all objects are in either .S, or

*Received by the editors June 11, 1997; accepted for publication (in revised form) May 29, 1998;
published electronically September 22, 1999.
http://www.siam.org/journals/sicomp/29-1/32310.html
fFaculty of Management, Tel-Aviv University, Tel-Aviv 69978, Israel (anily@post.tau.ac.il).
tEcole des Hautes Etudes Commerciales, Montreal, PQ, Canada (michelg@crt.umontreal.ca,
gilbert@crt.umontreal.ca).

327



328 SHOSHANA ANILY, MICHEL GENDREAU, AND GILBERT LAPORTE

Sq. In the stacker-crane problem analyzed by Frederickson, Hecht, and Kim (1978)
(see also Johnson and Papadimitriou (1985)), some directed arcs are given and the
objective is to find a directed closed tour of minimum length containing these arcs.
The stacker-crane problem is a special case of the swapping problem, where S = S,,,
and there is one unit of each object-type. The authors propose a polynomial approxi-
mation for this problem whose worst-case bound is 9/5. Atallah and Kosaraju (1988)
analyze the swapping problem on a line and on a circular track when there exists ex-
actly one unit of each object-type in S. They consider the cases of S = S,, (no drops)
and S = S, (with drops). Their motivation to study the problem arises from the
movement of a robot arm that is supposed to rearrange m objects among N stations.
The robot arm consists of a single link that rotates around a fixed pivot. The link’s
length is variable since it can be extended in and out. A gripper that can grasp any of
the objects is positioned at the end of the link. Minimizing the total distance traveled
by the gripper is NP-hard. Instead, the authors focus separately on minimizing the
total (a) telescoping motion, which corresponds to moving along a linear track, and
(b) angular motion, which corresponds to moving along a circular track. The paper
provides low polynomial algorithms for computing the optimal route: for the no-drop
case the algorithm runs in O(m + Na(N)) (a() is the inverse of Ackerman’s function)
for the linear track and in O(m + N log N) for the circular track (this last bound is
further tightened in Frederickson (1993)). For the with-drop case the algorithm runs
in O(m + N) for both the linear and circular tracks. Frederickson and Guan (1992,
1993) studied the same problem as that of Atallah and Kosaraju (1988) when the
objects are located on the vertices of a tree and the vehicle travels along its edges.
For the with-drop case they present two algorithms that run in O(m + Ngq), where
g < min{m, N}. The no-drop case is shown to be NP-hard, and the authors provide
two heuristics that run in low polynomial time with worst-case ratios of 1.5 and 1.25,
respectively.

In this paper, we develop an O(N?)-step algorithm for the linear track allowing
no-drop and with-drop objects. Section 2 introduces the terminology, and section 3
establishes the necessary structural properties of any optimal solution. Finally, the
main algorithm and its analysis is presented in section 4.

2. Notations and preliminaries. V = {v1,vq,...,vn} is a set of N worksta-
tions. Vertex vp,1 < D < N, is the depot where the vehicle starts and terminates the
tour. The vertices are indexed according to their location on the line from left to right.
S ={1,...,m} is aset of m object-types. Object-type 0 denotes the null object. Each
vertex v is associated with a pair (a,,b,) € [SU{0}] x [SU{0}], where a, is the object-
type currently at v and b, is the object-type desired at v. Without loss of generality
(w.l.o.g.) we assume that a, # b,. (If ap = bp = 0, then an equivalent problem can
be defined such that ap # bp by introducing a new node at the depot’s location and
a new object-type m + 1. Associate the depot with (0,m + 1) and the new vertex
with (m + 1,0).) The set S is partitioned into S, the set of no-drop objects-types,
and Sy, the set of object-types that can be dropped at intermediate vertices. d(u,v) is
the distance between vertices u and v. P* C V are the supply vertices of object-type
i(i =0,1,...,m), i.e., P = {v: ay, = i}. Let P* = {pj1,piz, ... pix(s)}- R* C V are
the vertices that require object-type i(i = 0,1,...,m), i.e., R® = {v : b, = i}. Let
R" = {ri,rio, ..., Tiky }- Let VP = P'UR’, and k(i) = |P’| = |R'| is the number of
objects of type i in the system. Thus, > ;" k(i) = N. The supply (demand) vertices
of object-type i are indexed according to their location from left to right.

If S = S,,, then once we know which supply vertex in P? serves each of the demand



THE SWAPPING PROBLEM ON A LINE 329

vertices in R* for i = 1,...,m, our problem reduces to the respective problem solved
by Atallah and Kosaraju (1988).

DEFINITION 2.1. A path is a sequence of directed arcs where the tail of one arc is
the head of the preceding arc in the sequence, and all arcs in the sequence are assigned
the same object-type i,0 < i < m.

DEFINITION 2.2. If object-type i,1 < i < m, that is initially located at vertex p;p
is used to supply the requirement of vertex ryn/, then the path from p;n to rin along
which the object is shipped is called a service path. (See below for an extension of the
definition for object-type 0.)

Assume w.l.o.g. that objects are never dropped in order to pick up objects of the
same type. Thus, in any feasible solution and any v € V with a, = i, there exists a
service path of object ¢ initiating at v and ending at vertex u, u € V with b, = 1,
1 <i<m. IfieS,, then the arcs of this path appear consecutively in the solution;
i.e., the vehicle traverses the service path with no intermediate stops. If i € Sy, then
the arcs of this path appear in the solution in the same order as in the path, but not
necessarily consecutively, meaning that the vehicle may drop the object and pick it
up later.

DEFINITION 2.3. A segment of the solution that the vehicle traverses empty is
called o deadheading.

According to Anily and Hassin (1992), if a, = 0 for v € V, then any feasible
solution includes a path of deadheadings originating at v and ending at some vertex
u with b, = 0. Such a path is called a service path of the null object. Note that a
feasible solution consists of k(i) service paths for each object-type i, i € S U {0} and
possibly some additional deadheadings.

DEFINITION 2.4. The end points of a path starting at u and ending at v, u, v € V
are the vertices u and v.

DEFINITION 2.5. A given arc is said to cover all points (not necessarily vertices)
on the track in between its tail and its head including its end points. A path covers
all points covered by its arcs.

DEFINITION 2.6. A path is left-to-right (right-to-left) if each of its arcs is directed
to the right (left).

DEFINITION 2.7. Two paths are intersecting in opposite directions if (a) one path
is left-to-right and other is right-to-left and (b) at least one end point of one path is
covered by the other path.

3. Structural properties of an optimal solution. In this section we prove
some theorems that ensure the existence of an optimal solution that satisfies some
specified properties. The theorems hold for all the problem’s variants discussed here.

THEOREM 3.1. There exists an optimal solution that does not contain any pair
of service paths for the same object-type i,0 < i < m, that are intersecting in opposite
directions.

Proof. The proof is by contradiction. Suppose the theorem is false, i.e., any
optimal routing contains service paths of the same object-type that are intersecting
in opposite directions. Consider an optimal solution and let SP; and SP; be two such
service paths for object-type i, 0 < 7 < m. Suppose SP; connects p;;1) to Tin(1)
and SPp connects pjj2) to 7ip2). W.lo.g. let SP; be a left-to-right path. We show
that there exists an alternative feasible solution that follows the same route and the
only difference is with respect to the assignment of object ¢ to the arcs of SP; and
SP,. Some arcs on these paths are assigned object ¢ and the others are turned into
deadheadings. As a consequence, the two new service paths are no longer intersecting



330 SHOSHANA ANILY, MICHEL GENDREAU, AND GILBERT LAPORTE

in opposite directions. For the null object, the new solution is identical to the given
one, but we distinguish differently between the service paths of object 0 and the
deadheadings.

According to our assumptions, there exists a segment (u,v) that is covered by
SP; and SP,, where SP; is directed from u to v and SPs, from v to u. The alternative
solution is defined such that r;j1)(7in(2)) is served from p;;e2)(pij1y). It is easy to
verify that the two new service paths consist of exactly those parts in SP; and SP; that
do not cover (u,v) and their directions are consistent with the respective directions of
SP; and SPs. Also, the segment (u,v) on SP; and SP, is turned into a deadheading.

In the following, we derive additional properties satisfied by optimal paths.

DEFINITION 3.2. V!() C V¥ is consecutive if it consists of V' nodes that appear
consecutively on the line.

DEFINITION 3.3. A consecutive partition of V? is a partition of V* into consec-
utive disjoint subsets.

DEFINITION 3.4. A subset of vertices V¥ C V* is called balanced if it is consec-
utive and is of even cardinality, where half of its vertices are in P' and the remaining
are in R'.

DEFINITION 3.5. A subset is minimally balanced if it is balanced and there does
not exist any consecutive partition of the subset into two balanced subsets.

DEFINITION 3.6. The consecutive minimally balanced partition (CMBP) of V' is
the consecutive partition of V', where each of the subsets in the partition is minimally
balanced.

Note that any feasible solution is associated with m + 1 sets of service paths, one
set for each object-type. The service paths of object ¢ induce a consecutive balanced
partition of V* defined recursively as follows: (1) the two end points of a service path
belong to the same subset in the partition; (2) all vertices of V' covered by a certain
service path belong to the same subset as the end points of the path; and (3) the
subsets are minimal. It is easy to see that for a given solution the consecutive balanced
partition of V? induced by the service paths of object i is well defined. Moreover, if
the solution does not contain any intersecting in opposite directions service paths for
the same object-type, then all service paths within a set of this partition are in the
same direction.

THEOREM 3.7. In any optimal solution that does not contain intersecting in op-
posite directions service paths of object i, the service paths of this object-type (1) induce
the CMBP of V' and (2) have constant total length.

Proof. Suppose Z is an optimal solution that satisfies the property of the theo-
rem. The service paths of object-type i that are associated with solution Z induce a
consecutive balanced partition of V?. We want to show first that the subsets of this
partition are minimally balanced. Assume w.l.0.g. that the leftmost vertex in V* is a
supply vertex s; € P'. Let L;; C V? be the set induced by solution Z that contains s.

The proof is by induction on the cardinality of V*. The minimum cardinality of
V' is two; i.e., V¥ consists of a supply vertex and a demand vertex and the theorem
is trivial. According to the inductive hypothesis, the theorem holds for any set of
cardinality less than |V|. Suppose |[V?| > 2. We distinguish between two cases:
(a) No consecutive partition of V* into two balanced subsets exists. Thus, L;; = V'
i.e., the partition of V* induced by the service paths of object-type ¢ in Z is into a
single set, which is the CMBP of V. (b) There exists a consecutive balanced partition
of V¥ into two subsets: let V? = Vj; U Vjs be a consecutive partition of V¢, where V;;
is a minimally balanced subset that contains s;. We will show that L;; = V;; and the



THE SWAPPING PROBLEM ON A LINE 331

rest will follow by the inductive hypothesis. Suppose that V;; C L;; but Viy # L;;.
Since s is the leftmost supply vertex of object ¢ on the line, it must serve a demand
vertex to its right. As a consequence, all service paths within L;; should be from left
to right, otherwise there would be intersecting paths in opposite directions within L;,
in contradiction to our assumption about Z. Since V;; C L;; but Vi3 # L;1, there
should be in Z a supply vertex p € V;; that serves a demand vertex r € L;j; — Vj1.
In view of the fact that V;; is balanced, at least one of the demand vertices v’ in Vj;
should be served according to Z by a supply vertex s’ € L;; — V;1. This contradicts
the assumption that Z does not contain any service paths for object-type i that are
intersecting in opposite directions.

In order to prove the second part of the theorem, we will show that the total
length of the service paths of object i within any subset of the CMBP of V' is constant.
Suppose w.l.o.g. that we are given a minimally balanced subset of the CMBP of V*
for which all service paths are from left to right. Also suppose that x and y are
consecutive vertices in V', where x is strictly to the left of y. Let Ip®(2)(Ir(z)) denote
the number of supply (demand) vertices from V* within the subset that are located
to the left or at the location of z. Then, the number of service paths of object ¢
that cover the segment connecting = to y is Ip*(z) — Ir®(x), which is strictly positive
according to our assumptions. Accordingly, a simple calculation that depends only
on the subset gives the total length of service paths within that subset.

4. The algorithm for the linear track case. In this section we present an
algorithm for finding an optimal policy for linear graphs. As a consequence of the
previous section, an optimal solution exists in which the service paths of each object-
type 4, 0 < i < m, induce the CMBP of V*. Let {Vig},—1,. 1(;) denote the CMBP of
V* for i =0,...,m. We now propose an algorithm for computing an optimal routing
policy. The first step in the algorithm is to define a directed graph on V' that consists
of those arcs that must appear in such an optimal solution. Each arc in the graph
connects two vertices in V; for some i =0,...,mand £ =1,..., L(3).

DEFINITION 4.1. A set Vi of the CMBP of V' is called a left-set (right-set) if
the number of supply vertices is no smaller (no larger) than the number of demand
vertices of object-type i in any consecutive subset of Viy that contains the leftmost
vertex of Viy.

The directed graph G on V is defined by the following algorithm, called Basic
Graph.

ALGORITHM BASIC GRAPH.

Step 0. For i =0,...,mand £ =1,..., L(i) do steps 1 and 2:

Step 1. Let k be the number of demand vertices in V. If Vi, is a left-set
(right-set), then index the demand vertices in Vjy from left to right (right to left) as
{r1,79,...,71}. Let G initially be a graph with no arcs. Add to Gy a directed arc
from each supply vertex in P’ N V;, toward the first demand vertex in R’ N Vj, to its
right (left), i.e., the first demand vertex it may serve.

Step 2. If |Vig| = 2, then stop (the graph G, contains a single arc). Otherwise,
set j = 1; while j < k do begin: Count the number of incoming arcs in Gy to r;. Let
this number be in(j); add in(j) — 1 arcs to Gy all from r; towards 7;41. endwhile;

Step 3. Let graph G be the composition of all subgraphs G for i =0,...,m and
=1,...,L().

Remark. Note that in Step 2, Vi, is a subset of the CMBP of V¢; thus in(j) > 1
for j <k —1and in(k) = 1.

LEMMA 4.1. The in-degree equals the out-degree for any of the vertices of graph G.



332 SHOSHANA ANILY, MICHEL GENDREAU, AND GILBERT LAPORTE

Proof. We have to show that the number of incoming arcs equals the number
of outgoing arcs for any vertex v € V. Let v € V, and denote (a,,b,) = (k,j) k,
j € SU{0}k # j. Also suppose that v € Viy N Vjp,. The only arcs incident to v are
arcs in the subgraphs Gy, and Gjp,. In Vi, v is a supply vertex; thus exactly one
arc exits from v in Gy. In Vjp,, v is a demand vertex; thus in G5, the number of
outgoing arcs from v is one less than the number of incoming arcs to v. Thus overall,
G satisfies the lemma.

A directed graph may be partitioned into a collection of equivalence classes such
that vertices w and v are in the same class if and only if the graph contains directed
paths from v to w and from w to v. (See section 5.5 in Aho, Hopcroft, and Ullman
(1974).) The subgraph induced by a certain class consists of the vertices in the class
as well as all edges in the graph that connect a pair of vertices in the class. These
subgraphs are called the strongly connected components of the given graph. In light of
Lemma 4.1, the union of the strongly connected components of G results in G itself.

We first demonstrate the algorithm when G is strongly connected: Since G is
Eulerian, there exists an optimal solution that consists of G’s arcs and does not use
the drop option. This is observed by noting that if the number of incoming arcs to
vertex v is k, k > 1, then all incoming arcs to v carry item b,, where k — 1 outgoing
arcs carry item b,. Thus, in £k — 1 of the k entrances to v the vehicle continues
with the same item; at one entrance item b, is unloaded and at one exit item a,
is loaded. Any Euler tour in G produces an optimal solution by starting at the
depot. The complexity of finding such a tour is linear in the number of arcs of G. A
simple calculation demonstrates that the number of arcs in G carrying item ¢ is at
most k(i)(k(é) + 1)/2. Thus, G contains at most > . k(i)(k(i) + 1)/2 arcs. Since
> k(i) = N, the maximum number of arcs in G is of order O(N?).

We continue with the general case when G is not necessarily strongly connected,
i.e., G is the union of a number of strongly connected components where each is an
Eulerian subgraph. Up to now, we have not used the fact that the vehicle is empty
along arcs associated with the null object and we have not used the drop option. For
that sake, we extend the term “connectivity:” It is not necessarily the case that for
two different components of G none is reachable from the other, moreover it may well
be that each is reachable from the other. An arc in G may cover intermediate vertices,
thus it consists of a sequence of basic arcs, where a basic arc is defined as a directed arc
connecting two consecutive vertices of V. We distinguish between three types of arcs
in G: (1) arcs of object-type ¢, i € Sy,; (2) arcs of object-type i, i € Sy; and (3) arcs
of the null object. Arcs of no-drop objects should be followed continuously from their
initial vertex to their terminal vertex; i.e., the respective sequence of basic arcs should
occur in the solution consecutively. Arcs of drop-objects should be followed from their
initial vertex to their terminal vertex with possible stops at intermediate vertices for
drops; i.e., the respective basic arcs should be followed at the order they occur in the
sequence, but not necessarily consecutively. The basic arcs of the null object occur in
the solution with no restriction on their order.

DEFINITION 4.2. Let C} and C} be different strongly connected components of
G. C} is directly reachable from C} if at least one of the following conditions holds:
(1) There exists an arc of the null object in G that covers vertices v € C] and w € Cj
and is directed from v to w; or (2) there exists an arc in G of object i, i € Sq, whose
tail is in C; NV, and at least one vertex in C§ is covered by this arc. G’s arcs
that allow direct reachability of strongly connected components are called reachability
arcs.



THE SWAPPING PROBLEM ON A LINE 333

DEeFINITION 4.3. Let C7,C5,...,C5 be different strongly connected components
of G. We say that C;, is reachable from C7 if C} is directly reachable from C;_; for
k=2,...,n.

DEFINITION 4.4. Two different strongly connected components of G, C{ and C35,
such that each is reachable from the other are said to be weakly connected.

For practical purposes, a maximal weakly connected component is a connected
component since starting at any vertex in the set there exists a closed tour that serves
all vertices in the set, possibly by using the drop option. Therefore, we repartition
V' into rougher equivalence classes by grouping the strongly connected components
of G according to the weak connectivity relation. Let C1’,CY, ..., C}’ be the weakly
connected components of G, where the depot is assumed to be in C7". In each of these
components identify a closed feasible tour that serves all its vertices: This tour is a
patching of the tours found in the strongly connected components, where the patching
is done along reachability arcs. For that sake, we extend the reachability definition
to weakly connected components.

DEFINITION 4.5. C}Y is said to be reachable from C}’ if C}’ contains a strongly
connected component that is reachable from a strongly connected component contained
in CyF, L # h.

DEFINITION 4.6. A weakly connected component of G that is not reachable from
any other weakly connected component is said to be an unreachable component. Let
C1’ be an unreachable component independently of its reachability from other compo-
nents as the tour should start at the depot.

DEFINITION 4.7. The reachable set of the unreachable component C° is the set
of weakly connected components of G that are reachable from C}’. (C} is said to be
reachable from itself.) We note that a weakly connected component of G either may be
an unreachable component or belongs to at least one reachable set of some unreachable
component.

If C}Y is reachable from C}’, then there exists a feasible closed tour that starts at
C}’ and serves all vertices in C}" UC}Y: The vehicle, while either carrying a droppable
item loaded at C'}’ or while being empty, traverses a reachability arc of G that connects
two vertices of C}’ and covers a vertex of C}’; in the first case, the item may be dropped
at such a vertex of C}’. The vehicle may then serve all vertices of C}’; in the first
case the vehicle then reloads the droppable item. The vehicle then continues toward
its destination in Cy’. Thus, a closed feasible tour that starts at the unreachable
component (the tour starts in C}’ at the depot) may be identified within each of the
reachable sets such that all vertices within the set are served. In order to execute this
step, no augmentation of the graph is needed, as it is a patching of the tours that
have been found separately in each of the weakly connected components contained
within the reachable set, where the patching is done along reachability arcs. Thus,
if C}” is the only unreachable component, no augmentation of G is required, i.e.,
there exists an optimal solution with total length identical to the total length of G’s
arcs. Otherwise, G must be augmented in order to reach each of the unreachable
components from C7’. Each augmentation arc added to G' must be traversed twice,
once in each direction. We next propose a minimum cost augmentation technique for
G whose complexity time is O(N?1log N); then we show how the complexity may be
reduced to O(N log N) by using the fact that the vertices are located on a line.

Define a directed graph T" on the set of vertices that correspond one-to-one to the
unreachable components of G. Let node £ of T represent C’ (node 1 of T corresponds
to C1"). There exists a directed arc in T from node ¢ to node k, k # 1, if and only



334 SHOSHANA ANILY, MICHEL GENDREAU, AND GILBERT LAPORTE

if there exists a pair of vertices v; and v;, in V such that v; is in the reachable set
of C}’ and vy, is in the unreachable component C}’. The length of this arc, denoted
by 6(¢,k), is defined as the length of the shortest arc connecting the reachable set
of '}’ and unreachable component C}’. The minimum cost augmentation of G' may
be found by solving a minimum directed spanning tree (MDST) on T rooted at node
1. The MDST was solved independently by Chu and Liu (1965), Edmonds (1967),
and Bock (1971). The complexity of their algorithm on a general directed graph with
N nodes and |E| edges is O(min{|E|log N, N?}). The number of nodes of T is the
number of unreachable components which is at most O(N). Thus, T contains at most
O(N?) edges. Therefore, the complexity of the MDST algorithm on 7" is O(N?log N).
Below we show that due to the linearity of G, we may apply the MDST algorithm on
a subgraph of T that contains at most O(N) edges. As a result the complexity of this
step will be reduced to O(N log N).

DEFINITION 4.8. A vertexv; € VNS, j > 1, is called extreme to the left in S if
and only if vj_1 € S; a vertexv; € VNS, j <N, is called extreme to the right in S
if and only if viy1 & S. A vertex is called extreme if it is either extreme to the left or
extreme to the right.

Let v; be an extreme to the left (right) vertex in the reachable set of the unreachable
component C}’. Let v, € V, h < j(h > j), be the rightmost (leftmost) vertex that
belongs to some unreachable component C}Y, k & {1,¢}. If such a vertex h exists, then
we say that the extreme vertex v; and the reachable set of C}’ have a neighboring
unreachable component C}Y. Each extreme verter may have at most two neighboring
unreachable components (one to its left and one to its right), but a reachable set
may have several neighboring unreachable components. Due to the linearity of the
track, there exists a minimum cost augmentation of G using only those edges of T
that connect reachable sets to their neighboring unreachable components. Indeed, it is
sufficient to include in T only edges connecting a vertex £ to a vertex k if and only
if O, k & {1,¢}, is a neighboring unreachable component of the reachable set of C}’.
The length of such an edge is given by 6(¢, k) = min{d(v,w): v is an extreme vertex
in the reachable set of C}’ and w € C}'}. According to the new procedure, T now
contains a subset of the arcs that were previously contained in T. An arc of T that is
eliminated is not needed in the augmentation of G as it is too expensive and can be
replaced by a cheaper sequence of those arcs that are left in T. It is easily verified that
any unreachable component C}’ can be reached from any reachable set C}’, k & {1, ¢},
via those arcs that are left in T. This property ensures that T contains a directed
spanning tree. The number of directed arcs in T is at most of size O(N), as each
extreme vertex may have at most two neighboring unreachable components.

Let MDST(T) be the MDST length of T, and let A(T) be its corresponding set
of arcs on the line. Along the arcs of A(T) the vehicle travels empty twice, once
in each direction. There exists an optimal solution for the problem whose length is
L(G) + 2MDST(T'), where L(G) is the total length of all arcs in G. The complexity
of the whole procedure is O(N?). Below we summarize the complete algorithm.

THE SWAPPING ALGORITHM FOR THE LINEAR TRACK CASE.

Step 1. Apply the Basic Graph algorithm on V. Let G be the resulting graph,
and let L(G) be its total length.

Step 2. Identify the strongly connected components of G.

Step 3. If the system contains the null object or Sy # ), then partition the strongly
connected components into equivalence classes according to the weak connectivity
relation. Let C7",CY,...,C}’ be the weakly connected components, with the depot



THE SWAPPING PROBLEM ON A LINE 335

at C1’. Within each of them find a closed feasible tour that serves all its vertices,
using only G’s arcs where some of them may be broken into basic arcs. Identify the
unreachable components, the reachable sets, and a corresponding set of reachability
arcs.

Step 4. Define a directed graph T on the set of nodes that corresponds one-to-one
to the unreachable components. A directed arc from node £ to node k in T, k # 1,
exists if and only if the unreachable component C}’ is a neighbor of some extreme
vertex in the reachable set of the unreachable component C°. The distance between
these nodes is determined by the minimum distance between an extreme vertex in the
reachable set of ('}’ and an extreme vertex in its neighboring unreachable component
CY. Let MDST(T') be the MDST length on T, and let A(T") be the corresponding set
of arcs in the linear track.

Step 5. Use two copies of A(T)’s arcs and reachability arcs that connect weakly
connected components within the same reachable set to patch the closed tours asso-
ciated with the weakly connected components. Along A(T)’s arcs the vehicle travels
empty. Starting at the depot, follow a feasible closed tour that serves all vertices by
traversing G’s arcs and twice the arcs of A(T) once in each direction. We conclude the
paper with a proof that the above algorithm solves the swapping problem optimally.

THEOREM 4.9. The swapping algorithm for the linear track case solves the swap-
ping problem on a line optimally.

Proof. Any feasible solution is the union of service paths for each object-type
i € {0,...,m} and possibly some deadheadings; see Anily and Hassin (1992). As
shown in Theorems 3.1 and 3.7, any feasible solution can be transformed into a feasible
solution of the same cost, where the length of service paths of each object-type i €
{0,...,m} is separately minimized and possibly some deadheadings. The minimum
cost service paths are obtained by algorithm BASIC GRAPH G. A minimum cost
set of deadheadings is found by applying the MDST procedure on T. Two copies of
each such deadheading is added to the BASIC GRAPH G in order to preserve the
final graph as Eulerian while making it connected.

REFERENCES

S. ANILY AND R. HAsSIN (1992), The swapping problem, Networks, 22, pp. 419-433.

A. V. Ano, J. E. HOPCROFT, AND J. D. ULLMAN (1974), The Design and Analysis of Computer
Algorithm, Addison—Wesley, Reading, MA.

M. J. ATALLAH AND S. R. KOsARAJU (1988), Efficient solutions to some transportation problems
with applications to minimizing robot arm travel, STAM J. Comput., 17, pp. 849-869.

F. Bock (1971), An algorithm to construct a minimum directed spanning tree in a directed network,
in Developments in Operations Research, Gordon and Breach, New York, pp. 29-44.

Y. J. Cuu anD T. H. Liv (1965), On the shortest arborescence of a directed graph, Sci. Sinica, 14,
pp- 1396-1400.

J. EDMONDS (1967), Optimum branchings, J. Res. Nat. Bur. Standards Sect. B, 71, pp. 233-240.

G. N. FREDERICKSON (1993), A note on the complexity of a simple transportation problem, SIAM
J. Comput, 22, pp. 57-61.

G. N. FREDERICKSON AND D. J. GUAN (1992), Preemptive ensemble motion planning on a tree,
SIAM J. Comput., 21, pp. 1130-1152.

G. N. FREDERICKSON AND D. J. GUAN (1993), Nonpreemptive ensemble motion planning on a tree,
J. Algorithms, 15, pp. 29-60.

G. N. FREDERICKSON, M. S. HEcHT, AND C. E. Kim (1978), Approzimation algorithms for some
routing problems, SIAM J. Comput., 7, pp. 178-193.

D. S. JounsoN AND C. H. PAPADIMITRIOU (1985), Performance guarantees for heuristics, in The
Traveling Salesman Problem, E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B.
Shmoys, eds., John Wiley, New York, Chapter 5, pp. 145-180.



