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We consider an infinite-horizon deterministic joint replenishment problem with first order interaction. Under this model,
the setup transportation/reorder cost associated with a group of retailers placing an order at the same time equals some
group-independent major setup cost plus retailer-dependent minor setup costs. In addition, each retailer is associated with
a retailer-dependent holding-cost rate. The structure of optimal replenishment policies is not known, thus research has
focused on optimal power-of-two (POT) policies. Following this convention, we consider the cost allocation problem of
an optimal POT policy among the various retailers. For this sake, we define a characteristic function that assigns to any
subset of retailers the average-time total cost of an optimal POT policy for replenishing the retailers in the subset, under
the assumption that these are the only existing retailers. We show that the resulting transferable utility cooperative game
with this characteristic function is concave. In particular, it is a totally balanced game, namely, this game and any of its
subgames have nonempty core sets. Finally, we give an example for a core allocation and prove that there are infinitely
many core allocations.
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1. Introduction
In the business world of today it becomes more prevalent
to lease the transportation/production and storage activi-
ties as well as other related services of a supply chain
to an external third-party logistics (3PL) service provider.
The use of 3PL started in the 1980s, but has grown sig-
nificantly in recent years. Today many businesses prefer
to lease several of their activities by a long-term com-
mitment to a single 3PL company (see, e.g., Leahy et al.
1995). However, it is well recognized today that mainly
large firms such as Minnesota Mining & Manufacturing
Co. (3M), Eastman Kodak, Dow Chemical, Time Warner,
and Sears Roebuck are leasing large parts of their logisti-
cal activities to 3PL providers. Small companies tend to be
more skeptical regarding the advantage of using 3PL (see,
e.g., Simchi-Levi et al. 2000). One of the main reasons
for the reservations of small companies about doing busi-
ness through a 3PL provider is related to the cost schemes
offered by the 3PL providers, which often contain some
economies-of-scale benefits that cannot be exploited by
small firms.
In the last two decades, the importance of joining forces

within a supply chain to reduce the systemwide costs has
been strongly recognized by the OR/MS research com-
munity, as well as by practitioners. As a result, the body
of research on joint replenishment problems through a
3PL provider has flourished. The main emphasis of this

research has been on searching for policies that minimize
the total systemwide costs for various systems under dif-
ferent assumptions. For a comprehensive review of supply
chain management, see Tayur et al. (1999) or Simchi-Levi
et al. (2004). However, a further question must be asked
once the policy minimizing the total cost is found, which is
how to allocate the total cost among the various parties in
the supply chain. The cost allocation problem is important
for cost accounting purposes as well as for enabling the
management to decide on the profitability of the various
entities in the supply chain. The cost allocation scheme may
have a significant impact on the long-term strategic deci-
sions, and therefore must be fair in the sense that no facility
would feel that it was subsidizing the others. Intuitively, the
cost allocation scheme should have the property that each
party would feel that acting as a coalition is worthwhile for
its own sake. Sharkey (1995) provides an excellent review
of cost allocation problems in the context of transportation
models.
In the context of the economic order quantity (EOQ)

inventorymodelwith safety stock,Gerchak andGupta (1991)
were the first to deal with the issue of how various stores can
benefit from consolidating orders. They also raise the issue
of how to split the gains (which they prove to be positive)
due to consolidation, and suggest some ad hoc approaches.
Their model assumes stochastic but independent demands
and lead times and identical cost parameters across stores.
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Later Robinson (1993) and Hartman and Dror (1996) cast
this problem in a cooperative game framework and con-
sidered various solution concepts such as the core and the
Shapley value. Hartman and Dror (2000) and Muller et al.
(2002) look into the newsvendor problem. In particular,
they define a model that calls for centralized orders and
for sharing the cooperation gains among individual play-
ers. The latter among these two papers shows that the core
of the game is nonempty under basically no requirements
on the joint distribution of stochastic demands. However,
the cost parameters ought to be uniform across vendors.
In this research, we focus on the cost allocation prob-

lem in an infinite-horizon deterministic single-warehouse
joint replenishment model, where a number of retailers,
each facing a constant demand rate, lease the reordering
or transportation of their supplies, as well as their storage
activities, to a 3PL provider. We assume that each time
a delivery is requested by any subset of retailers, a fixed
reorder/transportation (leasing or renting) cost, called major
setup cost, is charged. Moreover, each retailer is associated
with his own retailer-dependent fixed reorder/transportation
cost, called minor setup cost, which is possibly a function
of the distance or the travel time between the warehouse
and the retailer. This cost is being incurred whenever the
retailer replenishes its stock. The warehouse’s costs are
assumed to be exogenous to the model. We note that the
same setup cost structure may also occur in a production
process of a number of different items, where setting up the
process for production of any subset of the items incurs the
major setup cost, in addition to item-dependent setup costs
incurred whenever the items are produced. We assume here
that the fixed costs are exogenous to the model, and are
not the outcome of a price discount mechanism determined
by the model. In addition to the setup costs, the retailers
pay the 3PL provider for holding their stock at depots in
the retailers’ sites.
The optimization problem associated with the above

model is that of when to place orders for the various
retailers, and what are the quantities to order each time
a replenishment takes place. The goal is to minimize the
time-average systemwide costs. Had the major setup cost
been zero, the problem would in fact be that of solv-
ing independent EOQ problems. In particular, each retailer
would order its EOQ in equidistant time intervals when its
stock level is zero. The case where the major setup cost
is positive calls for coordination of the timing of various
orders for the sake of placing joint orders, making the opti-
mization problem more intriguing. The model considered
here with joint setup cost (see Equation (1)) is known in
the literature as the first-order interaction model (see, e.g.,
Federgruen and Zheng 1995).
More involved cases are also considered in the litera-

ture. For example, see Federgruen and Zheng (1992) and
Federgruen et al. (1992). We would also like to men-
tion Meca et al. (2004), which deals with the special case
where the minor setup costs are zero for all retailers.

Finally, Dror and Hartman (2005) consider the same model,
but their definition for the characteristic function of the
cooperative game is different than ours.
The first-order interaction model is the simplest model

that involves cooperation among retailers. In spite of its
relative simplicity, the structure of optimal policies for this
problem is as yet unknown, except for the zero-inventory-
ordering (ZIO) property, which insures that under any opti-
mal replenishment policy, each retailer orders only when
its inventory level is zero. Thus, practitioners resorted to
suboptimal policies that are efficient in terms of the com-
putational effort and which have some guaranteed (hope-
fully, small) deviation from the optimal average-time total
cost. In particular, we refer here to power-of-two (POT )
policies, in which each retailer orders in equidistant time
intervals that is an integer (positive or negative) power-of-
two times a fixed base time unit. The optimal POT policy
is known (see Jackson et al. 1985) to yield an average cost
that is at most 6% higher than the optimal average-time
total cost. By optimizing over the base time unit, the worst-
case gap can be reduced to 2% (see Roundy 1985). Our
results regarding the cost allocation hold for any fixed value
of the base time unit, and in particular, for the optimal one.
Given the optimal POT ordering policy, the next ques-

tion is how the retailers should split the total costs among
themselves. Many options exist here. For example, a naive
allocation can be that all pay their holding costs, and when-
ever an order is placed, all ordering retailers pay their minor
setup cost and evenly share the major setup cost incurred.
This scheme has the advantage of being simple, aesthetic,
and maybe easy to argue on nontheoretical grounds. How-
ever, it is possible that some retailers may feel that they
pay more than others toward the common goal of mini-
mizing social costs. It fact, they may end up subsidizing
the others. A specific example of that is given later in the
paper. Thus, a more systematic approach is needed. We
later define a cooperative transferable utility game repre-
senting the above-posed allocation problem and suggest the
application of a game-based cost-sharing rule, the core.
For any subset of retailers, we associate a cost value

that is the average-time total ordering/transportation and
holding costs for the above-posed problem when only the
retailers in the subset are present and when the optimal
POT policy (given this set) is utilized. Further, we show that
these costs values induce a cooperative game with trans-
ferable utility. We next consider the question of how to
allocate the total systemwide cost among the various retail-
ers. In other words, we look for a cost-sharing (or Pareto
efficient) solution concept. The main purpose of this paper
is to show that the abovementioned game is concave, and
to present an example for a core allocation. Recently, Dror
and Hartman (2005) considered a similar problem where
the definition of the value of a coalition is the cost under
the optimal replenishment policy. They give an example
where this cooperative game has an empty core. Finally,
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they state a sufficient condition for the nonemptiness for
the core of this game.
The rest of this paper is organized as follows. The

next section contains notations and preliminaries. Section 3
states our main results. In particular, we show there that the
suggested game is concave. In §4, a core allocation is intro-
duced, and the core is shown to contain an infinite number
of allocations. Section 5 concludes the paper.

2. Preliminaries and Notation
We consider the cost allocation problem in an infinite-
horizon single-warehouse joint replenishment model, with
n retailers in the set N = �1�2� � � � � n�. The cost struc-
ture considered here is as follows: Each time a delivery
is requested by any subset of retailers, a fixed reorder/
transportation cost K0, called the major setup cost, is
charged. Moreover, each retailer i is associated with
a retailer-dependent fixed reorder/transportation cost Ki,
called the minor setup cost. Thus, if a set S, �⊂ S ⊆ N ,
of retailers orders simultaneously, the setup cost incurred
at that time is

K0 +
∑
i∈S
Ki� (1)

Each retailer i, 1� i � n, is assumed to face a retailer-
dependent deterministic, constant demand rate denoted
by di, and the cost of holding one unit of product for one
unit of time at this retailer is hi. To simplify notation, we
let gi = hidi/2 for 1� i� n be the holding-cost parameter
of retailer i. Finally, we assume zero lead times. Identical
lead times can be handled similarly. Without loss of gen-
erality, we assume that the retailers in N = �1� � � � � n� are
ordered such that K1/g1 � K2/g2 � · · · � Kn/gn. For con-
venience, we define a dummy retailer, retailer n+ 1, with
Kn+1/gn+1 =	.
As mentioned in the introduction, we restrict ourselves

to POT policies, where each retailer orders at equidistant
time intervals of length 2miB for some (positive or neg-
ative) integer mi, 1 � i � n, and for some common base
time unit B. Jackson et al. (1985) showed that the optimal
among such policies yields an average cost that is at most
6% higher than the optimal average-time cost. By optimiz-
ing over B, B ∈ �1�2�, the worst-case gap can be reduced
to 2% (see Roundy 1985). Our results regarding the cost
allocation hold for any fixed value of B ∈ �1�2� and, in
particular, for the optimal one. For the sake of simplicity,
we assume in the sequel that time units are scaled so that
B= 1.
For any retailer i, 1� i� n+ 1, let � ′i =

√
Ki/gi and let

�i =
√
�K0 +Ki�/gi. The sequence �

′
i is nondecreasing in i.

Also, let T ′
i and Ti be the POT rounding-off of � ′i and �i,

respectively.
Let S = �i1� i2� � � � � is�⊆ N be a set of s retailers. Note

that s = �S�, i.e., it is the cardinality of S. For S with
�S�� 1, denote K0+

∑
i∈S Ki by K

0�S� and set K0���= 0.

Denote also
∑

i∈S gi by G�S�. Moreover, to simplify nota-
tion, let i0 = 0 and g0 = 0. Recall, however, that K0 > 0.
Also, let

i∗�S�= argmax

{
k�1� k� s

∣∣∣∣
∑

0�j�k Kij∑
0�j�k gij

�
Kik

gik

}
� (2)

Note that i∗�S�� 1. Let S0 = �i1� � � � � i
∗�S��. From Jackson

et al. (1985), we learn that the optimal POT policy for the
retailers in S is as follows. The retailers in S0 order simul-
taneously every 2m0 time units, where 2m0 is the integer
POT closest to �min�S�, where

�min�S�=
√
K0�S0�

G�S0�
� (3)

i.e., m0 is the unique integer that satisfies the inequality
2m0−0�5 � �min�S� < 2m0+0�5. We denote the POT reorder
interval of S0, namely, 2m0 , by Tmin�S�. If i

∗�S� < is , then
each of the retailers ij ∈ S\S0 orders at most as frequently
as the set S0. Indeed, each time such a retailer orders, the
set S0 also orders (but not the other way around). In fact,
a retailer ij with ij ∈ S\S0 orders at times prescribed by its
individual EOQ model, i.e., at � ′ij , rounded to the closest
integer POT, named T ′

ij
. Therefore, we refer to S0 as the

minimal set of S because the retailers in S0 replenish their
stocks the most frequently among all retailers in S.
We use also the following notation: For a set S ⊆N , let

i∗+�S�=min�n+1�min�ij � ij ∈ S\S0��. Clearly, if i∗�S� <
is , then Tmin�S� � T ′

i∗+�S� � · · · � T ′
is
. The optimal average-

time total ordering plus holding costs of the set of retailers
S, when they restrict themselves to POT policies (namely,
v�S�) equals the optimal objective value of the following
integer program:

�JRPPT(S)� Min
s∑
j=0

(
Kij

tij
+ gij tij

)

s�t� tij = 2mij � 0� j � s�

mij
�m0� 1� j � s�

mij
integer� 0� j � s�

(JRPPT(S)) was solved in Jackson et al. (1985) and was
shown to have an optimal objective value of the form

v�S�= K0�S0�

Tmin�S�
+ Tmin�S�G�S0�+

∑
ij∈S\S0

(
Kij

T ′
ij

+ gij T ′
ij

)
�

Example 1. Consider the following example with two
retailers. Let K0 = 15, K1 =K2 = 1, g1 = 1, and g2 = 1/64.
It is possible to see that �1 = 4, � ′2 = 8, and �2 = 32. More-
over, the minimal set is S0 = �1�, i.e., it contains only
Retailer 1. This retailer orders every four units of time,
while Retailer 2 joins him every other order. The total aver-
age cost of this policy is 8.25. In the case of no coopera-
tion, each of the retailers will order according to the EOQ
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formula, with a setup cost of 16 per order. As a result,
Retailer 1 will maintain his replenishment policy of order-
ing every four time units at an average cost of eight, while
Retailer 2 will replenish only every 32 time units at an aver-
age cost of one. (Thus, acting independently increases the
total average cost by 0.75.) There is a feeling here that by
using the POT joint replenishment policy, Retailer 2 con-
tributes more toward the joint venture because by joining
forces the major setup costs associated with his separate
orders are in fact eliminated.

As v���= 0 and as v�S� is a real number, the pair �N � v�
defines a cooperative game with transferable utility. More-
over, as it is clear that for any coalition S, � ⊆ S ⊆ N ,
v�S�+v�N\S�� v�N�, the formation of the grand coalition
is a natural outcome from a bargaining process. The next
question is how the cost v�N� has to be allocated among
the retailers. In other words, we look for a cost-sharing (or
Pareto efficient) solution concept. For this sake we refer to
the following definitions.
A game �N � v� is said to be concave if the following

property holds:

v�R∪ �l��− v�R�� v�S ∪ �l��− v�S�
for any R⊂ S ⊂N� l ∈N\S�

Also, a vector x ∈Rn is said to be a core allocation for the
game �N � v� if

∑
i∈N xi = v�N� and if for any set of retail-

ers S with � ⊆ S ⊆ N ,
∑

i∈S xi � v�S�. A game is called
balanced if its core is not empty, and it is called totally
balanced if all the games with the same characteristic func-
tion but restricted to subsets of players, are balanced too.
It is well known that a concave game is totally balanced.
In the next section, we state our main result.

3. The Concave Inventory Game
In this section, we prove that the first-order interaction joint
replenishment model described above induces a concave
cooperative game. As a result, a fair cost allocation exists,
such that no subset S of retailers, �⊂ S ⊆ N , would have
an incentive to deviate from the grand coalition to reduce
its total costs. We first present our main theorem:

Theorem 1. The transferable utility cooperative game
with N as its set of players and with v�S�, � ⊆ S ⊆ N ,
as its characteristic function, is concave. In particular, it is
totally balanced.

We defer the proof of the theorem to the end of this
section and start by proving some properties relating the
optimal POT policies for two subsets of retailers R and S
with R ⊂ S ⊆ N . The proof of the theorem makes use of
the following definitions and lemmas:

Lemma 1. For any subset of retailers C ⊆ S0 and any
retailer ij ∈ S0,
K0�C�

G�C�
�
Kij

gij
�

Proof. See Jackson et al. (1985). �

Lemma 2. For any j with ij ∈ S, ij+1 ∈ S, and ij < i
∗�S�,

K0��i1� � � � � ij��

G��i1� � � � � ij��
�
K0��i1� � � � � ij+1��
G��i1� � � � � ij+1��

�

Proof. Aiming for a contradiction, let ij < i∗�S� be such
that the lemma’s inequality does not hold. This implies that
for this ij ,

Kij+1

gij+1
>
K0��i1� � � � � ij��

G��i1� � � � � ij��
�

This contradicts Lemma 1. �

Lemma 3.
1. � ′i∗�S� � �min�S�� �i1 .
2. �min�S� < �

′
i∗+�S�.

Proof. 1. If i∗�S�= i1, then �min�S�= �i1 � �
′
i1
. Otherwise,

Lemma 2 implies that �min�S�� �i1 , and Lemma 1 implies
that �min�S�� �

′
i∗�S�.

2. If S0 = S, then i∗+�S� = n + 1 and the inequality
holds. Otherwise, by the definition of i∗�S�,

K0�S0 ∪ �i∗+�S���
G�S0 ∪ �i∗+�S��� <

Ki∗+�S�

gi∗+�S�
�

Thus,

�min�S�=
√
K0�S0�

G�S0�
<

√
K0�S0 ∪ �i∗+�S���
G�S0 ∪ �i∗+�S���

<

√
Ki∗+�S�

gi∗+�S�
= � ′i∗+�S�� �

Lemma 4. For any S ⊆N , i∗+�S� > i∗�N �.

Proof. If i∗+�S�= n+ 1, then the claim is trivial. Assume
now that i∗+�S�� n. Recall that i∗�N � is the largest index
i ∈N that satisfies the inequality

Ki

gi
�
K0��1� � � � � i��
G��1� � � � � i��

and that i∗�S� is the largest index i ∈ S that satisfies the
inequality

Ki

gi
�
K0�S ∩ �1� � � � � i��
G�S ∩ �1� � � � � i�� �

Note that by Lemma 1 the last inequality holds for any i,
i� i∗�N �. Thus, any i ∈N 0∩S is also in S0. This completes
the proof. �

Lemma 5. For S ⊆N , �min�N �� �min�S�.
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Proof. To prove the lemma, we first prove the following
inequality:

K0��1� � � � � l��
G��1� � � � � l��

�
K0��1� � � � � l�∩ S�
G��1� � � � � l�∩ S� � l ∈ S� (4)

To prove this inequality, we denote the indices of the retail-
ers in S by i1 < i2 < · · ·< ik = l. We also let the subset of
indices Lp, for p = 1� � � � � k, be defined as follows: Lp =
�i ∈N# ip−1 < i� ip�. Therefore, Lp is a consecutive subset
of N , where only its largest indexed member, namely ip, is
also in S. Clearly,∑

i∈Lp Ki∑
i∈Lp gi

�
Kip

gip
�

Now,

K0��1� � � � � l��
G��1� � � � � l��

= K0 +
∑k

p=1
∑

i∈Lp Ki∑k
p=1

∑
i∈Lp gi

�
K0 +

∑k
p=1Kip∑k

p=1 gip

= K0��1� � � � � l�∩ S�
G��1� � � � � l�∩ S� �

which completes the proof of inequality (4).
To conclude the proof of the lemma, we distinguish be-

tween two cases. In the first case, i∗�S�� i∗�N �. Here, the
proof follows by substituting i∗�S� for l in (4) and using
Lemma 2 for showing that

K0�S0�

G0�S0�
�
K0��1� � � � � i∗�S���
G��1� � � � � i∗�S���

�
K0��1� � � � � i∗�N ���
G��1� � � � � i∗�N ���

�

In the second case, i∗�S� > i∗�N �. Now, by Lemma 1,

Ki∗�S�

gi∗�S�
�
K0�S0�

G�S0�
�

Thus, invoking Part 2 of Lemma 3,

�2min�N �=
K0�N 0�

G�N 0�
<
Ki∗�N �+1
gi∗�N �+1

�
Ki∗�S�

gi∗�S�

�
K0�S0�

G�S0�
= �2min�S�� �

We further need the following notation. We will denote
the set S ∪ �l� for l ∈ N\S by Sl. Note that the minimal
set of Sl, i.e., S

0
l , can coincide with the minimal set of

S, namely, with S0, or it can contain l. It is also possible
that �l� is the minimal set of Sl. Lemma 4 implies that
i∗�Sl� < i∗+�S�.

Proof of Theorem 1. Recall that the sets of retailers R
and S are such that R⊂ S ⊂N and we need to show that for
any retailer l ∈N\S, v�Rl�− v�R�� v�Sl�− v�S�. Toward
this end, we write the value of various coalitions explicitly.
As the optimal replenishment interval for retailer i is a
function of the underlying set on which the algorithm is

applied, we denote by T opt
i �S� the replenishment interval

for retailer i when the algorithm is applied on set S. As
follows from Lemma 4, i∗�Sl� < i∗+�S�; hence, it is clear
that for all i ∈ S with i > i∗�S�, T opt

i �S� = T
opt
i �Sl� = T ′

i ,
which is the POT rounding-off of � ′i . Therefore,

v�S�− v�Sl�

= K0�S0�

Tmin�S�
+ Tmin�S�G�S0�−

(
Kl

T
opt
l �Sl�

+ glT opt
l �Sl�

)

−
(
K0�S0l \�l��
Tmin�Sl�

+ Tmin�Sl�G�S0l \�l��
)

−
i∗�S�∑

i=i∗+�Sl�� i∈S

(
Ki

T ′
i

+ giT ′
i

)

and

v�R�− v�Rl�

= K0�R0�

Tmin�R�
+ Tmin�R�G�R0�−

(
Kl

T
opt
l �Rl�

+ glT opt
l �Rl�

)

−
(
K0�R0

l \�l��
Tmin�Rl�

+ Tmin�Rl�G�R0
l \�l��

)

−
i∗�R�∑

i=i∗+�Rl�� i∈R

(
Ki

T ′
i

+ giT ′
i

)
�

We first show that T ′
l � T

opt
l �Sl�� T

opt
l �Rl�. If l is not a

member of either the minimal set of Sl or of the minimal
set of Rl, then T

opt
l �Sl�= T

opt
l �Rl�= T ′

l . If l is in the min-
imal set of Sl, then, by Lemma 4, it is also a member of
the minimal set of Rl. If l is a member of both minimal
sets of Sl and Rl, then T

opt
l �Sl�= Tmin�Sl� and T

opt
l �Rl�=

Tmin�Rl�. By invoking Lemma 5, T opt
l �Sl� � T

opt
l �Rl� and

by Part 1 of Lemma 3, T opt
l �Sl� � T ′

l . Otherwise, l is
a member of the minimal set of Rl, but is not a mem-
ber of the minimal set of Sl. Thus, in Sl, T

opt
l �Sl� = T ′

l ,
where in Rl, T

opt
l �Rl�= Tmin�Rl�. By Part 1 of Lemma 3,

�min�Rl�� �
′
l , and therefore also Tmin�Rl�� T

′
l , proving that

T ′
l � T

opt
l �Sl� � T

opt
l �Rl�. Because T

′
l is the minimizer of

��Kl/x�+glx: x= 2ml and ml is an integer}, we obtain that

Kl

T
opt
l �Sl�

+ glT opt
l �Sl��

Kl

T
opt
l �Rl�

+ glT opt
l �Rl��

Therefore, it is sufficient to show that

K0�S0�

Tmin�S�
+ Tmin�S�G�S0�−

(
K0�S0l \�l��
Tmin�Sl�

+ Tmin�Sl�G�S0l \�l��
)
−

i∗�S�∑
i=i∗+�Sl�� i∈S

(
Ki

T ′
i

+ giT ′
i

)

�
K0�R0�

Tmin�R�
+ Tmin�R�G�R0�−

(
K0�R0

l \�l��
Tmin�Rl�

+ Tmin�Rl�G�R0
l \�l��

)
−

i∗�R�∑
i=i∗+�Rl�� i∈R

(
Ki

T ′
i

+ giT ′
i

)
� (5)
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To prove inequality (5), we distinguish between two
cases:
Case 1. i∗�R�� i∗�S�. We will show that the following

two inequalities hold. The first is

K0�S0�

Tmin�S�
+ Tmin�S�G�S0�

�
K0�R0�

Tmin�R�
+ Tmin�R�G�R0�+

∑i∗�Sl�
i=1� i∈S\R Ki

Tmin�Sl�

+ Tmin�Sl�
i∗�Sl�∑

i=1� i∈S\R
gi+

i∗�S�∑
i=i∗+�Sl�� i∈S\R

(
Ki

T ′
i

+ giT ′
i

)

and the second is

K0�R0
l \�l��

Tmin�Rl�
+Tmin�Rl�G�R0

l \�l��+
i∗�R�∑

i=i∗+�Rl�� i∈R

(
Ki

T ′
i

+giT ′
i

)

�
K0 +

∑i∗�Sl�
i=1� i∈R Ki

Tmin�Sl�
+ Tmin�Sl�

i∗�Sl�∑
i=1�i∈R

gi

+
i∗�S�∑

i=i∗+�Sl�� i∈R

(
Ki

T ′
i

+ giT ′
i

)
�

These two inequalities imply inequality (5). To prove
the first among these two inequalities, we note that its
left-hand side equals v�S0�, i.e., the optimal POT policy
average-time cost of the minimal set of S. This is due to
the fact that when the algorithm is applied to a subset that
is the minimal set of some other set, it will end up with a
new minimal set that is the subset itself, i.e., �S0�0 = S0.
Lemma 4 implies that i∗+�R� > i∗�S�, and because i∗�R��
i∗�S� in this case, we get that R0 ∪ �S0\R� = S0. Thus,
the right-hand side of the first inequality is a solution to
the (JRPPT(S0)) problem, except that now some of the con-
straints mi � m0 are relaxed: The constraints mi � m0 for
i ∈R0 stay intact, while for i ∈ S0\R they are replaced by the
constraints mi � log2�Tmin�Sl��. By Lemma 5, Tmin�Sl� �
Tmin�S�, implying that each such constraint is relaxed. Thus,
the solution to the relaxed version of the (JRPPT�S0�) prob-
lem is a lower bound on v�S0�.
As for the second inequality, we note by Lemma 4 that

the two sets S0\R0 and R are disjoint. Thus, in the last term
of the right-hand side of the second inequality, one can
replace the upper summation limit i∗�S� by i∗�R�, which
results in the following equivalent inequality:

K0�R0
l \�l��

Tmin�Rl�
+ Tmin�Rl�G�R0

l \�l��+
i∗�R�∑

i=i∗+�Rl�� i∈R

(
Ki

T ′
i

+ giT ′
i

)

�
K0 +

∑i∗�Sl�
i=1� i∈R Ki

Tmin�Sl�
+ Tmin�Sl�

i∗�Sl�∑
i=1� i∈R

gi

+
i∗�R�∑

i=i∗+�Sl�� i∈R

(
Ki

T ′
i

+ giT ′
i

)
�

In view of the fact that i∗�Rl�� i∗+�R� (see Lemma 4),
the left-hand side of the above inequality represents the
optimal objective function value of the (JRPPT�R0 ∪ �l��)
problem, excluding the average-time minor setup cost plus
holding cost of retailer l. The resulting minimal set is
replenished every Tmin�Rl� units of time. The right-hand
side represents the objective function value of a relaxation
of (JRPPT�R0 ∪ �l��) (again excluding the average-time
minor setup cost plus holding cost of retailer l). In the
relaxation, each of the constraints mi � m0 for i ∈ R0 is
replaced by mi � log2�Tmin�Sl��. By Lemma 5, Tmin�Sl��
Tmin�Rl�, therefore implying that each such constraint is
relaxed. Thus, the solution to this relaxed version of the
(JRPPT�R0 ∪ �l��) problem is a lower bound on the left-
hand side value. This completes the proof for Case 1 of
inequality (5).
Case 2. i∗�R� > i∗�S�. We prove the following two in-

equalities, which combined imply (5):

K0�S0�

Tmin�S�
+ Tmin�S�G�S0�+

i∗�R�∑
i=i∗+�S�� i∈R

(
Ki

T ′
i

+ giT ′
i

)

�
K0�R0�

Tmin�R�
+ Tmin�R�G�R0�+

∑i∗�Sl�
i=1� i∈S\R Ki

Tmin�Sl�

+
i∗�Sl�∑

i=1�i∈S\R
giTmin�Sl�+

i∗�S�∑
i=i∗+�Sl�� i∈S\R

(
Ki

T ′
i

+ giT ′
i

)

and

K0�R0
l \�l��

Tmin�Rl�
+ Tmin�Rl�G�R0

l \�l��+
i∗�R�∑

i=i∗+�Rl�� i∈R

(
Ki

T ′
i

+ giT ′
i

)

�
K0 +

∑i∗�Sl�
i=1� i∈R Ki

Tmin�Sl�
+

i∗�Sl�∑
i=1� i∈R

giTmin�Sl�

+
i∗�R�∑

i=i∗+�Sl�� i∈R

(
Ki

T ′
i

+ giT ′
i

)
�

We start with proving the first inequality. The left-hand
side of this inequality is the optimal objective value of the
(JRPPT�S0∪R0�� problem. The resulting minimal set is S0

that is replenished every Tmin�S� units of time. The right-
hand side of the inequality represents a relaxation of the
same problem, where each of the constraints mi �m0 for
i ∈ S0\R0 is replaced by the constraint mi � log2�Tmin�Sl��.
In view of Lemma 5, Tmin�Sl�� Tmin�S�, and thus we get
that these constraints are a relaxation of the original ones.
This completes the proof of the first inequality.
In proving the second inequality, note that its left-hand

side corresponds to the optimal objective function value of
(JRPPT(R0 ∪ �l�)), excluding the average-time minor setup
cost plus the holding cost of retailer l. Because i∗�Rl� �
i∗+�R� (see Lemma 4), the resulting minimal set is R0

l ,
which is replenished every Tmin�Rl� units of time. The right-
hand side is the objective function value of (JRPPT(R0 ∪
�l��) (again excluding the average-time cost of retailer l),
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but where all the constraints mi �m0 are replaced by mi �

log2�Tmin�Sl��. In view of Lemma 5, Tmin�Sl� � Tmin�Rl�,
and therefore the right-hand side is a relaxation of the left-
hand side. This completes the proof of inequality (5) and,
in fact, of the theorem. �

Note that Tmin�N � is the time length between two orders,
in each of which at least the retailers in N 0 replenish. At
some of these replenishment points other retailers order too.
As retailer n is the one who orders with the least frequency,
its reorder points can be considered to be the beginning
of a new inventory cycle. In particular, these are the only
points in time in which all stocks are empty. In the next
section, we derive a core allocation.

4. A Core Allocation
We next describe a core allocation for the game �N � v�.
We find this cost allocation appealing in terms of suggest-
ing a fair way to split the total costs. Establishing that the
suggested allocation is indeed a core allocation can be con-
sidered as an alternative proof for the balancedness of the
game. However, recall that Theorem 1 says more than just
balancedness. At the end of the section, we show that in
fact there are infinitely many core allocations.

Theorem 2. There exists a core allocation under which all
retailers pay their own minor setup costs and holding costs,
and each retailer in N 0, the minimal set of N , pays part of
the major setup cost. A retailer j , j �N 0, does not pay any-
thing toward the major setup cost. In particular, if all the
retailers in N 0 have the same cost characteristics—that is,
Kj =K and hj = h—then the allocation of the major setup
cost is nonincreasing in j ∈N , and is strictly increasing in
the demand rate of the retailers in N 0.

Proof. Let �2 = �2min�N � = K0�N 0�/G�N 0� and define $j
as follows:

$j =



gj�

2 −Kj

K0

� j ∈N 0�

0� j �N 0�

We propose the following cost allocation xj for j ∈N :

xj =




$jK0 +Kj

Tmin�N �
+ gjTmin�N �� j ∈N 0�

Kj

T ′
j

+ gjT ′
j � j �N 0�

We show below that x ∈ Rn is a core allocation for the
game �N � v�.
It is easy to verify that

∑n
j=1 $j = 1. It is also easy to see

that the allocation is efficient, i.e.,
∑n

j=1 xj = v�N�. In the
special case that Kj =K and hj = h for all j ∈N 0,

$j =



�hdj/2��

2 −K
K0

� j ∈N 0�

0 j �N 0�

which is increasing in the demand rate of the retailers
within the minimal set. We next show that for all S ⊆N ,

∑
j∈S
xj � v�S�� (6)

Recall that

v�S�= K0�S0�

Tmin�S�
+ Tmin�S�G�S0�+

n∑
j=i∗+�S�� j∈S

(
Kj

T ′
j

+ gjT ′
j

)

= K0�S0 ∩N 0�

Tmin�S�
+G�S0 ∩N 0�Tmin�S�

+
max�i∗�S�� i∗�N ��∑

j=min�i∗�S�� i∗�N ��+1� j∈S

(
Kj

Tmin�S�
+ gjTmin�S�

)

+
n∑

j=i∗+�S�� j∈S

(
Kj

T ′
j

+ gjT ′
j

)
�

where the last equation follows from Lemma 4. We first
note that any retailer j ∈ S, j >max�i∗�S�� i∗�N ��, satisfies
j � i∗+�S�, and it pays, under the suggested allocation, the
amount of xj = �Ki/T

′
j �+gjT ′

j . Thus, proving inequality (6)
is equivalent to proving the following inequality:

K0�S0 ∩N 0�

Tmin�S�
+G�S0 ∩N 0�Tmin�S�

+
max�i∗�S�� i∗�N ��∑

j=min�i∗�S�� i∗�N ��+1� j∈S

(
Kj

Tmin�S�
+ gjTmin�S�

)

�

max�i∗�S�� i∗�N ��∑
j=1� j∈S

xj � (7)

We distinguish between two cases: (1) i∗�S� � i∗�N �,
and (2) i∗�S� > i∗�N �. We will show that in both cases it
is sufficient to prove the following inequality:

K0�S0 ∩N 0�

Tmin�S�
+G�S0 ∩N 0�Tmin�S��

∑
j∈S0∩N 0

xj � (8)

Case 1. From Lemma 4, it follows that if i∗�S�� i∗�N �,
then the sets S and �i∗�S�+ 1� � � � � i∗�N �� are disjoint. In
such a case, the summation in the left-hand side of inequal-
ity (7) is over an empty set, and indeed it remains to prove
only (8).
Case 2. If i∗�S� > i∗�N �, then for any i ∈ �i∗�N �+ 1�

� � � � i∗�S��∩ S,

xi =
Ki

T ′
i

+ giT ′
i �

Ki

Tmin�S�
+ giTmin�S��

as T ′
i is the POT minimizer of the EOQ cost function

f �t�= �Ki/t�+git. Thus, in this case too, in order to prove
inequality (7), it is sufficient to prove (8).
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We proceed now by proving (8). Note that for any retailer
i ∈ S0 ∩N 0,

xi =
$iK0 +Ki

Tmin�N �
+ giTmin�N ��

Thus, proving (8) is equivalent to proving that

K0�S0 ∩N 0�

Tmin�S�
+G�S0 ∩N 0�Tmin�S�

�

∑
i∈S0∩N 0�$iK0 +Ki�

Tmin�N �
+G�S0 ∩N 0�Tmin�N ��

To prove this last inequality, note that (1)
∑

i∈S0∩N 0 $i
� 1 and therefore,

∑
i∈S0∩N 0�$iK0 + Ki� � K0�S0 ∩ N 0�;

and that (2) Tmin�N � is the optimal POT reorder inter-
val for a fictitious single retailer whose setup cost is∑

i∈S0∩N 0�$iK0 + Ki� and whose holding-cost parameter is
G�S0 ∩N 0�. This is the case because by definition of $i,

�2 = �2min�N �=
$iK0 +Ki

gi
=

∑
i∈S0∩N 0�$iK0 +Ki�

G�S0 ∩N 0�
�

i ∈ S0 ∩N 0� (9)

This completes the proof. �

According to the core cost allocation proposed in Theo-
rem 2, if all the retailers have identical cost parameters and
they differ only in their demand rates, then the major setup
cost allocation will be linearly increasing in the demand
rate of the retailers within the minimal set, but the retail-
ers outside the minimal set will not pay anything toward
this cost. Therefore, we can say that in the proposed core
cost allocation, the major setup cost allocation is nonde-
creasing in the demand rate. The justification for such an
allocation is that the frequency that the major setup cost
is charged is determined by the retailers with the largest
sales volume, and therefore they should pay for it. Indeed,
within the minimal set, the major setup cost allocation is in
accordance to the pro rata cost allocation schemes that are
commonly used in the shipment of bulk carriers. However,
it is hard to justify economically the fact that retailers out-
side the minimal set, even if they order rarely, do not pay
anything toward the major setup cost.
In addition, the proposed core cost allocation does not

satisfy the economies-of-scale property, which gives ben-
efit to retailers with higher demand rates. Indeed, for the
identical cost parameter model discussed above, we claim
that the benefit of cooperation within the minimal set
tends to decrease as demand increases. To see that, note
that if retailer i ∈ N 0 acted alone, it would have paid
the whole major setup cost K0 and would have ordered
every �i time units, which would have cost it on average√
2�K0 +K�hdi, where K is the minor setup cost and h

is the holding-cost rate for all the retailers. By cooper-
ating, this retailer is paying only $iK0 toward the major
setup cost and it orders every Tmin�N � time units (which

is the POT rounding-off of �min�N �). Now, by construction
of the core cost allocation in Theorem 2, $i is chosen
such that Tmin�N � is the optimal POT reorder interval for
retailer i ∈N 0 when it cooperates. In such a case, retailer i
would be charged

√
2�$iK0 +K�hdi per time unit, which

is 100%
√
�$iK0 +K�/�K0 +K� of what it would have paid

if it deviated and acted alone. As we can see, the savings
of cooperation is increasing as $i is decreasing, or alterna-
tively as the demand is decreasing. This tendency also holds
outside the minimal set where the retailers pay exactly what
they would have paid had K0 = 0.
In the next theorem, we prove that the core contains

infinitely many allocations. The allocations that we found
have similar properties to the allocation proposed in The-
orem 2. In particular, if the minimal set is not a single-
ton, then the retailers outside the minimal set pay nothing
toward the major setup cost, and within the minimal set,
the retailers with larger demands tend to pay a greater share
of K0 than the ones with smaller demands.

Theorem 3. There are infinitely many core allocations.

Proof. We claim that without loss of generality we can
assume that �min�N � > Tmin�N �/

√
2. Otherwise, recall from

our discussion in §2 that we scaled the base time unit B
to 1. Therefore, a small perturbation of B to B = 1 + &
for a small positive &, and reapplying the algorithm with
this new base time unit, results in �min�N �, which is not
of the form Tmin�N �/

√
2, where Tmin�N � = B2m for some

integer m.
For the sake of the proof we define the following set of

constraints on $i, i ∈N 0:

∑
i∈N 0

$i = 1�

T 2
min�N �

2
�
$iK0 +Ki

gi
< 2T 2

min�N �� i ∈N 0�

$i � 0� i ∈N 0�

The core allocation proposed in Theorem 2 satisfies this set
of linear constraints. Moreover, if �N 0�> 1, the above set of
constraints has an infinite number of solutions as one can
construct an infinite number of small perturbations of the $i
values for i ∈ N 0, proposed in Theorem 2, that satisfy the
above set of constraints. The proof that such perturbations
are also core allocations follows along the lines of the proof
of Theorem 2, except for noting that (9) is replaced by the
fact that T 2

min�N �/2 � �$iK0 + Ki�/gi < 2T 2
min�N � implies

that

T 2
min�N �

2
�

∑
i∈S0∩N 0�$iK0 +Ki�

G�S0 ∩N 0�
< 2T 2

min�N ��

It remains to prove the theorem for the case where
i∗�N �= 1.
By the algorithm, the retailers in the minimal set N 0 =

�1� reorder every Tmin�N � time units, where Tmin�N � is
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the POT rounding-off of �min�N � = �1, and each retailer
i �N 0 replenishes every T ′

i time units, where T
′
i is the POT

rounding-off of � ′i . As said above, without loss of gener-
ality, we can assume that Tmin�N �/

√
2< �1 �

√
2Tmin�N �.

We allocate the major setup cost as follows: Let $1 = 1− &
and $2 = &T ′

2/Tmin�N �, for sufficiently small & that satisfies
the following set of linear constraints that we denote by
(LP(&)):

T 2
min�N �

2
<
$1K0 +K1

g1
� 2T 2

min�N ��

�T ′
2�

2

2
�
$2K0 +K2

g2
< 2�T ′

2�
2�

$1 = 1− &�
$2 =

&T ′
2

Tmin�N �
�

&� 0� $1 > 0�

In particular, the solution & = 0 is feasible for (LP(&)).
In view of the fact that �1 > Tmin�N �/

√
2 for sufficiently

small & > 0, the first inequality in (LP(&)) is feasible. Also,
in view of the fact that � ′2 <

√
2T ′

2 , the second inequality
holds too for sufficiently small &� 0. Thus, the set of fea-
sible solutions of (LP(&)) contains an infinite number of
solutions. Accordingly, for each feasible &, we propose the
following allocation: Retailer 1 pays

x1=
$1K0+K1

Tmin�N �
+g1Tmin�N �=

�1−&�K0+K1

Tmin�N �
+g1Tmin�N ��

Retailer 2 pays

x2 =
$2K0 +K2

T ′
2

+ g2T ′
2 =

�&T ′
2/Tmin�N ��K0 +K2

T ′
2

+ g2T ′
2�

and retailer i for i� 3 pays

xi =
Ki

T ′
i

+ giT ′
i �

The proposed allocation is efficient (or cost sharing), i.e.,∑N
i=1 xi = v�N�, because the total major setup cost paid per

unit of time is

$1K0

Tmin�N �
+ $2K0

T ′
2

= K0

Tmin�N �
�

To complete the proof, we next prove the stand-alone
condition, namely, that∑
i∈S
xi � v�S�� S ⊆N� (10)

Recall that

v�S�= K0�S0�

Tmin�S�
+ Tmin�S�G�S0�

+
n∑

j=i∗+�S�� j∈S

(
Kj

T ′
j

+ gjT ′
j

)
� (11)

We distinguish between four cases toward proving inequal-
ity (10). If 1 � S and 2 � S, then (10) holds as

∑
i∈S xi =∑

i∈S�Ki/T
′
i �+ giT ′

i < v�S�. In this case, the left-hand side
of (10) does not include any share of the major setup cost
K0, and each retailer pays its separate optimal POT pol-
icy cost.
If 1� S and 2 ∈ S, then 2 ∈ S0. Thus,

∑
i∈S
xi =

$2K0 +K2

T ′
2

+ g2T ′
2 +

∑
i∈S� i �=2

(
Ki

T ′
i

+ giT ′
i

)
�

According to (11), any retailer i ∈ S\S0 is associated with
a term identical to xi. Thus, we need to show that

∑
i∈S0

xi�
K0+K2

Tmin�S�
+g2Tmin�S�+

∑
i∈S0\�2�

(
Ki

Tmin�S�
+giTmin�S�

)
�

We next make the comparison term by term, i.e., we show
that

x2 �
K0 +K2

Tmin�S�
+ g2Tmin�S� and xi �

Ki

Tmin�S�
+ giTmin�S�

for i ∈ S0\�2�. The inequality holds for i ∈ S0\�2�, as Ki/
T ′
i + giT

′
i � Ki/Tmin�S� + giTmin�S�. Regarding i = 2, we

need to show that

x2 =
$2K0 +K2

T ′
2

+ g2T ′
2 =

�&T ′
2/Tmin�N ��K0 +K2

T ′
2

+ g2T ′
2

�
K0 +K2

Tmin�S�
+ g2Tmin�S��

For sufficiently small values of & > 0, &T ′
2/Tmin�N � < 1;

thus, in the left-hand side of the above inequality, Retailer 2
pays less than K0 as its share in the major setup cost. In
addition, note that according to the second inequality in
(LP(&)), T ′

2 is the optimal POT reorder interval for a fic-
titious retailer with a setup cost of �&T ′

2/Tmin�N ��K0 +K2

and holding-cost parameter of g2. This completes the proof
of this case.
Suppose now that 1 ∈ S. From the algorithm’s properties

and the fact that i∗�N � = 1, it follows that S0 = �1�, and
therefore Tmin�N �= Tmin�S�. We start with the case where
2� S. In this case, it is sufficient to show that

�1− &�K0 +K1

Tmin�N �
+ g1Tmin�N ��

K0 +K1

Tmin�S�
+ g1Tmin�S��

which follows directly. Suppose now that 2 ∈ S. Then, it
remains to show that

�1− &�K0 +K1

Tmin�N �
+ g1Tmin�N �

+ �&T ′
2/Tmin�N ��K0 +K2

T ′
2

+ g2T ′
2

�
K0 +K1

Tmin�S�
+ g1Tmin�S�+

K2

T ′
2

+ g2T ′
2 �

In fact, this inequality holds as an equality because Tmin�N �
=Tmin�S�. �
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As discussed above, the proposed core allocations charge
more toward the major setup cost from retailers that need
to order more frequently, but they suffer from three draw-
backs. The first is that the set of retailers N\N 0 seems not
to pay its fair share of the major setup cost. In fact, as it
pays (almost) nothing against K0, it can be seen as a set of
free riders. The second is the lack of the economies-of-scale
property, as we have demonstrated for the identical cost
parameters case. Another drawback is the fact that each
retailer pays the direct holding costs it inflicts under the
prescribed policy. This can be seen as unfair by the retailers
in N 0 because their actual replenishment interval Tmin�N �
might be significantly larger than their unconstrained inter-
val. As a result, the retailers in N 0 may pay a greater hold-
ing cost than what they would have paid had K0 = 0. Still,
our results ensure that no subset of retailers will gain by
deviating from the coalition and acting independently.
In the introduction, we described a cost allocation

scheme in which each retailer pays his direct costs (minor
setup cost plus his holding costs), while the major setup
cost for each order is shared evenly between all the retailers
that are participating in this joint order. We next demon-
strate, by using Example 1, that this is not a core allocation.

Example 1 (continued). Under the POT optimal policy,
which costs on average 8�25, the two retailers order to-
gether every eight units of time. If Retailer 2 then pays
half of the major setup cost of 15, he ends up paying
�7�5 + 1�/8 + 8/64 = 1�1875 per unit of time, where
Retailer 1 pays 8�25− 1�1875= 7�0625. Retailer 2 will be
better off to break away and to use his own EOQ policy of
ordering every 32 time units, as his cost will be reduced to
one per unit of time. In summary, using the optimal POT
joint replenishment policy and sharing the major setup cost
evenly between the two retailers (while each pays his own
direct costs) is not a core allocation.

5. Conclusions
In this research, we study the cost allocation problem in
the joint replenishment model with first-order interaction.
We show that a cooperation among retailers in a supply
chain with the above cost structure is beneficial not only
from the whole system point of view, but also for each of
the retailers separately. In our analysis, we follow the cost
allocation fairness concept of balancedness developed in
game theory and apply it to the joint replenishment model
discussed here.
We presented a family of infinitely many cost allocation

schemes in the core of the game induced by the above joint
replenishment model. According to the schemes proposed,
some of the retailers (i.e., those who are not members of
the minimal set) pay almost nothing toward the major setup
cost expense. These allocation schemes, which are fair the-
oretically, may cause some of the retailers to feel unhappy:
In particular, the retailers in the minimal set may argue
that they do not want to cooperate with the other retailers

because they pay only for their optimal POT policy as if
no major setup cost existed. Psychologically, it is clear that
this coalition will not resist for the long run as the mini-
mal set will probably break away at some point from the
grand coalition, a step that will not worsen their monetary
status. One important question is whether there exist core
cost allocations of a different structure according to which
all retailers (on top of their minor setup costs and hold-
ing costs) pay a reasonable share of the major setup cost
expense.
We hope that this paper will trigger more research on cost

allocation in joint replenishment systems. Future research
should deal with other joint replenishment models. For
example, the warehouse may also be a party in the coali-
tion, as in Roundy (1985), where in addition to the retailers’
minor setup costs and inventory holding costs, the model
includes a warehouse setup cost that is charged each time
the warehouse places an order from the supplier, as well as
the inventory holding costs at the warehouse. The objec-
tive in this problem is to minimize the systemwide average
costs. The author proposes a POT policy that costs at most
6% (2%) of the optimal average cost depending on whether
the base time unit is given or optimized. However, no one
has yet considered the issue of cost allocation among the
warehouse and the retailers in this problem. Another ques-
tion that is of particular interest is whether it is possi-
ble to generalize this type of results (e.g., nonempty core)
to any joint replenishment system with submodular setup
cost function, for which Federgruen and Zheng (1992) con-
struct an optimal POT policy that comes within 6% or 2%
of a lower bound on the optimal average-time total cost,
depending on whether the base time unit is fixed or vari-
able. Unfortunately, our concavity proof of the characteris-
tic cost function is tailored to the specific model considered
here. Thus, other techniques should be developed for the
more general case, if it is true. Future research should also
address the joint replenishment problem in more realistic
settings, in particular, when demands are nonstationary.
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