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We propose a method to design cost allocation contracts that help maintain the stabil-
ity of strategic alliances among firms by using cooperative game theory. The partners
of the alliance increase their efficiency by sharing their assets. We introduce a new
sufficient condition for total balancedness of regular games, and a full characteri-
zation of their nonnegative core. A regular game is defined by a finite number of
resources owned by the players. The initial cost of a player is a function of the vector
of quantities of the resources that the player owns. The characteristic function value
of a coalition is a symmetric real function of the vectors of its members. Within this
class we focus on centralizing aggregation games, meaning that the formation of a
coalition is equivalent to aggregating its players into one artificial player whose cost
is an intermediate value of the costs of the aggregated players. We prove that under a
certain decreasing variation condition, a centralizing aggregation game is totally bal-
anced and its nonnegative core is fully characterized. We present a few nonconcave
games in operations management that their nonnegative core is fully characterized,
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1 | INTRODUCTION

This research is related to strategic alliances of independent
companies that cooperate by pulling their resources in order
to achieve common goals. The partners of the alliance may
carry out similar portfolios of activities as is the case with
partnerships among airlines that have started to form in 1989
in the collaboration between Northwest and KLM. Today, Star
Alliance, the greatest such alliance, consists of 27 compa-
nies. Strategic alliances may also be signed among partners
that have complementary activities, as for example the ones
between Spotify and Uber or between Starbucks and Barnes
& Noble. In contrast to mergers or joint ventures where some
companies form a larger company by transferring owner-
ship, see for example, AT&T and Time Warner, in strategic
alliances the collaborating firms keep their own identity,
implying that the decision of a firm to join a strategic alliance
is reversible, and therefore, the alliance’s stability is of major
concern. Thus, a real challenge that is linked to the formation

by showing that they satisfy the conditions presented in this article.
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of a successful strategic alliance is the design of a contract
that specifies a fair revenue/cost sharing scheme where all its
partners are satisfied and no subset of partnering companies
feels that it can do better by quitting the alliance and forming a
new smaller partnership. In this paper we use the principles of
cooperative game theory with transferrable utilities to design
revenue/cost allocation that supposedly maintain the stability
of strategic alliances. Our results fit better strategic alliances
among companies that propose similar portfolios of activities
and for the sake of reaching a larger market segment, they
share their assets, facilities and/or databases.

Any particular application of a strategic alliance among
firms has its own characteristics, usually implying the neces-
sity of a tailored made solution technique that derives a
revenue/cost allocation that ensures stability. For example, a
two-stage game theoretic approach has been proposed for the
revenue sharing problem of strategic alliances among airlines,
mentioned above (see Hu, Caldentey, & Vulacano, 2013). In
this article, we do not refer to a specific type of a business.
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Instead, we consider general strategic alliances among service
or manufacturing firms that share a similar domain of activi-
ties and their common interest is to minimize their operational
costs. The firms collaborate by combining their assets and
competencies in order to improve their efficiency and their
profit. The contribution of each firm to the partnership is a
function of the initial amount of the assets that it possesses
(we limit ourselves to quantitative assets only). In order to
ensure stability of the partnership, the cost allocated to the
firms, and to all subsets of firms, that are members of the part-
nership, should not be higher than their cost prior to forming
the collaboration. If such a cost allocation vector exists for a
certain partnership, the game is said to be balanced. In gen-
eral, if the game is balanced and the variability among the
firms is remarkable, it might happen that the strongest firms,
that is, the ones that contribute most of the assets to the part-
nership will be courted by the weaker ones to the extent that
the cost allocation contract that ensures stability, may not only
totally waive the costs of the strongest firms but it may also
specify payments of the weaker firms to the strongest ones
in order to solicit them to join the partnership. Any negative
entry in the cost allocation vector represents a payment made
to the corresponding strong partner by the weaker partners. In
operations management, cost allocation vectors that contain
negative entries, even if stability of the partnership is guaran-
teed, are less attractive in the long run, as they might cause the
weak partners to resent the strong ones that are paid, putting
the partnership at risk.

This paper considers strategic alliances under which the
assets of a number of service or production systems are con-
solidated into a single “super-server” or “super production
facility,” in order to increase the partnership’s efficiency. Var-
ious reasons give rise to the practice of consolidation where
the main one is reduction of operational costs. Additional
possible benefits of consolidation include the reduction of
congestion, reduction of greenhouse gas emissions, amelio-
rating the service experience of customers in terms of service
time and convenience, etc. We prove that under certain con-
ditions, such collaborations give rise to a fotally balanced
cooperative game, that is, the game and all its subgames are
balanced. Moreover, we prove that for the type of games con-
sidered in this article, there always exists core cost allocation
vectors in which there is no need to convince a partner to join
the cooperation by paying him, no matter how influential the
partner is. In fact, we fully characterize the set of nonnega-
tive cost allocation vectors in the core, that is, the nonnegative
vectors that fulfill all the conditions of stability, but we do
not characterize the part of the core where the vectors contain
negative entries.

In the context of service systems, models that minimize
the long-run average congestion cost among parallel M/M/1
queueing systems by partial consolidation, are analyzed in
Anily and Haviv (2017), where systems may cooperate by
either reallocating the incoming streams of customers while
leaving the servers’ capacities intact, or alternatively, by

reallocating the total servers’ capacities among the servers
while keeping the incoming streams of customers intact. In
this paper, we focus on full consolidation of parallel M/M/1
queueing systems as done in Anily and Haviv (2017), where
any coalition of systems combines additively the arrival rates
and the service rates of its members in order to form a new
“super” M/M/1 queueing system whose cost is its long-run
congestion. Below and in Subsection 1.1, we refer to this
game as the consolidation game of parallel M/M/1 queueing
systems. A process that has some similarities to the consol-
idation game of M/M/1 systems is the visa travel service
AustraliaETA, where citizens of 35 countries, including the
United States and most of the European countries, request a
visitor visa to Australia. Prior to the use of the online ser-
vice, any citizen of these countries had to come to the closest
Australian embassy or consulate, wait in line to fill some
information, leave there her passport and wait for the visa
by mail. Today, the citizens of all these countries use the
same online service to request a visitor visa, which is usually
obtained in a few hours.

If the consolidation game of M/M/1 systems were con-
cave, then it would be totally balanced and the sufficient
condition proposed by Shapley (1971) could be invoked to
fully characterize its nonempty core. But, Anily and Haviv
(2010) prove that the game is nonconcave, and proposes
to link to the game a new concave game called its auxil-
iary game whose core coincides with the nonnegative part
of the core of the original game, proving that the original
game is totally balanced. The question that has been often
raised in the context of the proof in Anily and Haviv (2010)
is whether the genuine idea behind the auxiliary game is
generalizable beyond the queueing game. In this article we
investigate the type of games that can be proved to be totally
balanced by using an appropriate auxiliary game. For that
sake we shortly review the main concepts of cooperative game
theory.

Cooperative games with transferable utilities are coalitional
games defined by a pair (N, C) where N={1, ..., n} is a set
of players and the characteristic function. C is a set function
that returns a real number C(S) for any coalition dCSCN,
that is, ., C:2Y¥ > R, where R is the set of real numbers,
and C(#)=0. We refer here to C(S) as the cost of coali-
tion S C N. The coalition S= N is called the grand-coalition.
Under any partition of the grand-coalition into disjoint sets
Si, ..., Sw, the cost of the game is Y.,_, C(Sy), meaning
that the total cost is additive in the coalitions. A necessary
condition for all the players of N to cooperate and form the
grand-coalition, is subadditivity of the game: a game (N,
C) is subadditive if and only if the characteristic function
C is subadditive, that is, for any two disjoint coalitions S,
TCN, C(S U T)<C(S)+ C(T). Subadditivity implies that
C(N) < Y.7_, C(Sy) for all partitions {Si, ..., Sy}, m>1, of
N, meaning that the grand-coalition is an optimal formation
of coalitions in terms of total cost.
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Once that the grand-coalition is formed, the players bargain
for a fair cost allocation scheme of the total cost C(V). Various
cost allocation concepts have been proposed, where the com-
mon guideline is achieving a reasonable amount of stability
or fairness among the players. Let X = (x{, ... ,x,) € R" be
a cost allocation vector where x;, i € N, is the cost allocated
to player i. The condition Y_, x; = C(N), called efficiency is
preliminary for a cost allocation vector. For the sake of this
paper we describe the two most renowned concepts of stabil-
ity or fairness, the core that is attributed to Shapley (1955)
(see Zhao, 2017), and the Shapley value. The core of the game
(N, C) consists of all efficient cost allocation vectors that allo-
cate to the members of any coalition S, S C N, no more than
C(S), that is, Y, .¢xi < C(S). These last requirements are
called the stand-alone conditions. This set of conditions guar-
antees stability as no subset of players can claim to reduce
its cost by quitting the grand-coalition. The linearity of the
conditions in the variables x; for i € N implies that the core
is either empty, consists of a single vector or is infinitely
large. A cooperative game (N, C) whose core is nonempty is
said to be balanced, and a game whose core and the cores
of all its subgames are nonempty, is totally balanced. Find-
ing out if a game is balanced, let alone characterizing the
whole core of the game, is intricate as the corresponding lin-
ear programming formulation is of an exponential size, since a
stand-alone constraint is required for any subset of N. Another
well-known cost allocation concept is the Shapley value. Any
cooperative game is associated with a unique value, called
its Shapley value. The Shapley value of player i € N is the
average marginal cost of adding the player to the players
that precede him where averages are taken with respect to
all potential orders of the players. The Shapley value does
not necessarily belong to the core of a balanced game, but
its definition is plausible and sounds fair. In addition to the
efficiency property, the Shapley value satisfies symmetry, lin-
earity, and the null player properties (see Shapley, 1953). In
fact, the Shapley value is the only value that satisfies all the
above four properties.

Many cooperative games, especially in operations man-
agement and logistics, have a further feature that allows a
more efficient presentation than listing the 2" values that the
characteristic function assumes. The class of regular games
is proposed in Anily and Haviv (2014)): a regular game is
defined by a finite list of k¥ > 1 different quantitative resources
indexed by £ =1, ..., k that the players own. Each player is
fully characterized by a vector of properties of size k¥ whose
¢th element represents the amount of resource £ that the
player owns. The cost of a coalition is a symmetric mapping of
the vectors of properties of the players in the coalition into the
real numbers and it is otherwise independent of the identity of
the players. Regular games can be presented in a compact way
by stating the form of the mapping as a function of the collec-
tion of vectors of properties. As a consequence it allows more
flexibility than the classic presentation (N, C) does, since the
mapping returns a real value for any collection of x-vectors

even if the vectors are not associated with “real” players of
N. Furthermore, manipulating real functions using appropri-
ate algebraic rules in order to prove new properties is simpler
and a safer haven than doing the same with set functions.
For example, consider the following definition (see Anily &
Haviv, 2014) on homogenous of degree p, p > 0, cooperative
games:

Definition 1 A regular game is homogeneous
of degree p, p > 0, if for any integer m, the cost
of cloning m times a collection of vectors of
properties, is m?” times the original cost of these
vectors of properties.

While cloning players in a regular game is a simple mat-
ter, doing so in a nonregular game (N, C) is meaningless as
the characteristic function is defined only on coalitions of
N. A regular game that is homogenous of degree O displays
economies of scale as the cost of m > 1 copies of a collection
of vectors of properties is the same as the cost of a single copy,
thus the cost per player decreases implying that efficiencies
are improved by scale. In homogenous of degree 1 games, the
cost increases linearly in the number of copies of the players,
thus there are not any economies of scale. Homogenous of
degree p games for 0 <p <1 (p> 1) display economies (dis-
economies) of scale, as the average cost per player improves
(deteriorates). In Anily and Haviv (2014), it is proved that
regular subadditive and homogenous of degree 1 games are
totally balanced.

A number of classes of games have been proved to be totally
balanced. Here, we focus on the prominent class that is central
to our paper, and we shortly mention another pivotal class for
the sake of comparison.

¢ Condition 1. A game (N, C) is concave if its charac-
teristic function is concave, that is, for any two coali-
tions S, TCN,CSUT)+C(SNT)SCS)+C(T).
Concave games are sub-additive but not the other
way around. It was shown in Shapley (1971) that
the core of a concave game possesses n! extreme
points, each of which being the marginal contribu-
tion vector of the players for one of the n! permuta-
tions of the players. In particular, the Shapley value
of a concave game is the center of gravity of its
core. If the game is monotone and concave, then its
core is non-negative, as all its extreme points are
non-negative. Otherwise, there exist core cost allo-
cation vectors with negative entries. Concave games
are the most structured cooperative games whose
core is fully characterized (see Shapley, 1971). As
a side remark note that the set of average concave
games, introduced in Ifiara and Usategui (1993),
contains the set of concave games. Similarly, they
are totally balanced and their core contains their
Shapley value.
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e Condition 2. A market game, see for example,
Shapley and Shubik (1969) and Chapter 13 in
Osborne and Rubinstein (1994), is defined as fol-
lows: Suppose there are x inputs. An input vector
is a nonnegative vector in R*, denoted by (%g)’ﬂ
Each of the n players possesses an initial commit-
ment vector w; € (9{3)’“, 1 <i<n, which states a
nonnegative quantity for each input. Moreover, each
player is associated with a continuous and convex
cost function f; : (R)* — R, 1 <i<n. A profile
(zi)ien of input vectors for which Y, yzi = X, cyWi
is an allocation. The game is such that a coali-
tion S of players seeks an optimal redistribution of
its members’ commitments among its members in
order to get a profile (z;);es of input vectors that
minimizes the total cost across the members of S.
Formally, for any #CSCN,

C(S) = min {Zfi(li) Dz € (RY),

ieS
and Zzi=2wi} 1

ieS ieS

ies

In contrast to concave games whose entire core is well
defined, just a single core cost allocation, based on com-
petitive equilibrium prices, is known for market games (see
Osborne & Rubinstein, 1994, p. 266).

We note that neither concave games nor market games are
necessarily regular. A market game (N, C) is regular if and
only if the characteristic function value of the grand-coalition
C(N), (see Anily & Haviv, 2010), is given as the minimum of
the sum of n identical functions, thatis, f; =f foralli € N. In
such a case, the cost of a vector of properties is independent
of the identity of the player that is in possession of the vector.
In other words, regular games satisfy the anonymity property,
that is, the cost of any coalition depends only on the respective
collection of the vectors of properties of its members, and is,
otherwise, independent of their identities.

In this article we concentrate on a subclass of regular
games that we call centralizing aggregation games, where
an aggregation function aggregates any number of vectors of
properties into a new vector of properties. Centralizing means
that the cost of the vector of properties generated by aggre-
gating a certain input of vectors of properties, behaves like
a measure of centrality of the costs of the individual vectors
of the input. More specifically, the cost of the new vector is
in between the cost of the cheapest vector and the cost of the
most expensive vector in the input, and it is strictly increas-
ing in the cost of the vectors in the input. A precise definition
of a centralizing aggregation game is given in Section 3. Note
that the aggregated vector is not necessarily associated with a
player of N, but nevertheless, as the game is regular, its cost
is well defined.

The main theorem of the paper proves that under a certain
decreasing variation condition, a nonnegative centralizing
aggregation game is totally balanced and its nonnegative core
is fully identifiable. This is done by defining an auxiliary
nonnegative monotone game whose core is contained in the
core of the original game, and showing that the auxiliary
game is concave. The concavity of the auxiliary game and its
monotonicity imply that its core is nonempty and nonnega-
tive (see Shapley, 1971). Finally, we show that the core of
the auxiliary game coincides with the nonnegative core of the
original game.

The outline of the paper is as follows: Section 2 general-
izes the concept of auxiliary games proposed in Anily and
Haviv (2010) to any game. Section 3 presents some notations
and preliminaries, and a rigorous definition of regular games,
the class of centralizing aggregation games and some of their
properties. Section 4 elaborates on the auxiliary games of
centralizing aggregation games. Section 5 presents the main
theorem that provides a new sufficient condition for total bal-
ancedness of centralizing aggregation games. In fact, it is
proved that the nonnegative core of such games is fully char-
acterized. The total balancedness of a few nonconcave games
in queueing and scheduling is proved in Section 1 by using
the main theorem. Section 2 concludes the paper by present-
ing an open question on the total balancedness of a class of
centralizing aggregation games.

2 | THE AUXILIARY GAME

The concept of the auxiliary game of the consolidation game
of parallel M/M/1 queueing systems has been defined in Anily
and Haviv (2010). Here, we generalize this concept to any
cooperative game: let (N, C) be a cooperative game where
N={1, ..., n} is a set of n players, and the set function
C: 2N - R, called the characteristic function, returns the cost
of any coalition SCN, with C(@)=0. The auxiliary game
(N, E) of (N, C), is defined by the characteristic function
C(S) = min{C(T) : SCT C N}.

Theorem 1  Suppose that (N, C) is a nonneg-
ative game, and consider the set function C(S)
defined above. Then, the following properties
hold:

1. For any subset #CSCN, C(S) < C(S).

2. (N,C) is a well-defined game with C(#) = 0
and C(N) = C(N).

3. (N, Z’) is a monotone game.

4. Ifthe game (N, C) is monotone then the game
(N, E) coincides with the game (N, C).

Proof
1. By definition, C(S) < C(S) for any SCN.
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2. The only condition that needs to be proved
in order for (N, 5) to be a well defined game
on the set of players N, is that c@W = o.
First, note that Z’(ﬂ) > 0 as the game (N, C)
is non-negative. Next, we show that E'(ﬂ) <
0. In view of the first item of the theorem
C@) < C@) = 0, concluding the proof that
C(@) = 0. Finally, we prove that C(N) =
C(N), by observing that the grand-coalition,
N, contains all the players of N thus there is
no way of reducing its cost by adding more
players to N.

3. Consider two coalitions §CSCTCN. Let
coalitions S and T’ be coalitions that sat-
isfy C(S) = C(8") and C(T) = C(T"), where
§'2Sand T'2T. Clearly, C(S)< C(T') as
otherwise, it would be a contradiction to the
definitions of C(S) and §'. Thus, C(S) <
C(D).

4. If the game (N, C) is monotone then it is not
possible to reduce the cost of any coalition
S C N by adding to it new players from N\S,
thus C(S) = C(S).

The monotonicity of the auxiliary game (N, E’) implies that
it is a nonnegative game as 0 = C(#) < C(S) for any coalition
SCN.

Definition 2 The game (N, E’) of a given
game (N, C) is called the auxiliary game
of (N, C). A coalition TCN is said to be
minimal for coalition SCT, if and only if
C(S) = C(T).

A minimal coalition of a given coalition is not necessar-
ily unique. The maximal size minimal coalition of any given
coalition in the consolidation game of parallel M/M/1 queue-
ing systems analyzed in Anily and Haviv (2010), is proved
to be unique. In Section 4, the uniqueness of the maxi-
mal size minimal coalition is generalized to any centralizing
aggregation game.

A notion related to the auxiliary game is proposed in Drech-
sel and Kimms (2010), where the subcoalition-perfect core
for any cooperative game, is defined. The subcoalition-perfect
core of a nonnegative balanced game is, actually, the core of
the auxiliary game, defined in Anily and Haviv (2010)) and
used here. Note that the subcoalition-perfect core is not the
core of the auxiliary game (N, 6’), if the characteristic func-
tion C:2V — R assumes negative values as E(@) would be
negative, by definition of C, contradicting the definition of
a game.

The next theorem demonstrates some special features of
auxiliary games that make them helpful in proving total
balancedness of certain games.

WILEY—

Theorem 2 [f the auxiliary game (N, E’) of a
given game (N, C) is (totally) balanced, then

1. The game (N, C) is also (totally) balanced.
2. The core of the game (N, C) coincides with
the non-negative core of the game (N, C).

Proof

1. If the game (V, E‘) is balanced, then its core
is nonempty. Let x=(xj, ..., x,) be a core
allocation of (N, 6). We will show that this
cost allocation is also a core allocation of
the game (N, C). For that sake we prove
that the efficiency and the stand-alone con-
ditions hold. Regarding the efficiency, note
that Y\ x; = C(N) = C(N) by using
the second item of Theorem 1. For the
stand-alone conditions, consider any coali-
tion SCN: ¥, .ot < C(S) < C(S), where
the first inequality follows from the fact that
the vector x is in the core of the game (N, E‘).
The second inequality follows from the first
item in Theorem 1. If (N, E‘) is totally bal-
anced, then the same proof applies for any
subgame (S, C),#CSCN, proving that (V,
C) is totally balanced.

2. The nonnegativity of the core of the game
(N, E’) follows from the third item in
Theorem 1, and Lemma 1 in Drechsel and
Kimms (2010), which prove that the core
of a monotone game, if nonempty, is non-
negative. The rest of the proof follows from
Theorem 1 in Drechsel and Kimms (2010)..

Theorem 2 provides a tighter formulation of the nonneg-
ative core of a nonmonotone game (N, C), but its help in
identifying core cost allocations of a (totally) balanced game
(N, O), s not clear. According to Drechsel and Kimms (2010),
the ellipsoid method might provide an element in the core
in many applications. Our goal is to provide sufficient con-
ditions under which the auxiliary game is concave, as is the
case with the consolidation game of parallel M/M/1 queue-
ing systems in Anily and Haviv (2010). Under concavity, the
core of the auxiliary game is a polyhedron where each of
its n! nonnegative extreme points is associated with a cer-
tain order of the n players in N, so that the ith entry of the
extreme point, for 1 <i<n, is the marginal cost of adding
the ith player to the i — 1 players preceding her (see Shap-
ley, 1971); that is, under concavity of the auxiliary game,
the whole nonnegative core of the game (N, C) is identi-
fied. The auxiliary game is not helpful in identifying core
cost allocations with negative entries, where some players
get paid by others in order to persuade them to join the
grand-coalition.
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3 | CENTRALIZING AGGREGATION
GAMES

This section lays the foundations for the structure of games
that we focus on and demonstrates them by two examples.
Regular games are as introduced in Anily and Haviv (2014)
and described next: a game (N, C) is regular, if each of its n
players owns some quantities of an integer number x > 1 of
resources indexed by £ =1 ..., k. Thus, each player i € N is
associated with a vector y' € D C R*, called its vector of prop-
erties, where y; specifies the amount of resource 7, 1 < <«,
that is initially owned by player i. The set D is called the per-
missible set. In a regular game, the cost C(S) induced by any
coalition S C N of size s =IS1> 1, is a symmetric function of
the s vectors of properties owned by its players. More specif-
ically, C(S) can be represented by a symmetric function C, of
the s vectors of properties of S, that is, C, : D* — R, where the
function value is independent of the order of the input vectors.
Let Cy =0 represent the cost of the empty coalition, and for
any singleton coalition C({i}) = C,(y') fori € N. Any regular
game is associated with a vector y0 € D, called the null vec-
tor of properties, whose cost C;(y*) =0. The role of y° is to
guarantee that the sequence {C;}> is consistent by linking
any two consecutive functions by Cy(y!, ..., y*)=Ci4 107,
y!, ..., ¥5), for any collection (y!, ..., y*) € D~

The class of regular games is quite large and it contains
many well-known games in economics, operations and ser-
vice management, graph theory etc. A regular game is easily
extendable to any set of players once that each player is asso-
ciated with a vector of properties. As a consequence, it is
possible to duplicate players as shown in Definition 1. Let y™
denote a sequence of m vectors of properties y!, ..., y" in D.
The next definition provides a formal description of regular
games:

Definition 3 An infinite sequence of sym-
metric functions {C,,},>¢ is said to be Infi-
nite Increasing Input-Size Symmetric Sequence
(ITISSS) of functions for a permissible set D
in R*, where xk>1 is integer, if (i) Cy = 0
and for any m>1, C,:D" - %R, and (ii)
there exists a null vector y’ € D such that
C;(y")= 0 and for any given sequence of
m—1 vectors of properties y™ € D"~/,
Cp— 1y~ =C,(y™~ 1, y%. Moreover, any
game (N, C) with INI>1 players, where each
player i € N is associated with a vector of
properties y° € D, such that for any SCN,
C(S) =Ci5i(y'lies), is called a regular game.

An aggregation function g"” maps the m-fold, m > 1, carte-
sian product of the set D into itself, so that g(y) =y, for any
y € D, and g™ : D™ — D aggregates m vectors of properties
into one, that is, g (y™) € D for any y™ € D", m > 1. Next,
aggregation games are defined.

Definition 4 Let (N, C) be a regular game
that is associated with the IIISSS of functions
C,:D >R, where #> 0, and D is a per-
missible set. If (i) there exists an aggregation
function g" : D™ — D, such that C,(y™) =
C; (g™ (y™)), for any y™ € D", m > 1, and (ii)
the function C,"g® : D*> — R is reflexive, sym-
metric, and it satisfies the commutative and the
associative laws, then the game is an aggrega-
tion game.

According to Definition 4, an aggregation game (N, C),
which is associated with an IIISSS of functions {Cy}x >0, is
fully characterized by its aggregation function g? : D?> — D
and the cost function C; : D — R. An aggregation game with
D =R}, y°=0, and g?(x, y) =x+y, is considered in Ozen,
Reiman, and Wang (2011). The paper proves that the game is
totally balanced if and only if the function C| is elastic.

Next, centralizing aggregation games are defined:

Definition 5 An IIISSS of functions
{Ciliso (N, C) is said to be centraliz-
ing if for any m> 2, y™ € D" with
C;(y) < ... £C;(y™), the following properties
hold (i) C;(y") <C,(y™)<Ci(y™), and (ii)
Cny1(y™, z) is strictly increasing in C;(z),
for any z € D. An aggregation game (N, C)
that is associated with a centralizing IIISSS of
functions is called a centralizing aggregation
game.

Theorem 3 provides an alternative definition for a central-
izing aggregation game in terms of C; and the aggregation
function g». The proof is by induction using the properties
of aggregation functions and Definition 5.

Theorem 3  An aggregation game defined by
the aggregation function g : D?> =D and the
Sfunction C; : D — R is a centralizing aggrega-
tion game if and only if.

o Ci(y)<Ci(z) Ci(y) < Ci(g@(y,
z)) £ Ci(z).
o Ci(gP(y, z)) is strictly increasing in C\(z) for any y,

zeD.

implies  that

Next, we present two examples of centralizing aggrega-
tion games where each player is associated with a param-
eter that denotes its cost, and the characteristic function
value of a coalition is either the arithmetic or the geometric
mean cost of the coalition’s members. The games are eas-
ily verified to be centralizing aggregation games by Theorem
3. Let N={1,2, ...} be the set of natural numbers, and
No=NU{0}.
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o The arithmetic mean game (presented also in Anily

& Haviv, 2014): each player i € N is associated
with a cost a; € R. The cost of a coalition is the
average cost of the coalition’s members. In order to
define the game as an aggregation game let x =2,
yW=(0,0), D={0,0}U{(x?):xeR,£EN}.
Each player is associated with a vector of properties
(a, 1) where a € %R is her cost. In addition, let the
aggregation function g® :D? — D be defined as
2P ((x1, k1), (x2, k2)) = (x1 +x2, k1 + k2). Thus, each
group of k players is associated with a vector of
properties of the form (x, k) where x is the sum of the
costs of its players. Let C;(y°)=0 and otherwise,
for any (x, k) € D, (x, k) #Y°, let C;((x,k)) = Ji
Given a collection of m>1 vectors of properties
y™ e D", with y' = (x;, k) €y™, i=1, ..., m, let
Cn(y™) = Cy (g™ (y™)). If g™(y™)#)°, then
Ci(g™(y™)) = ¥ xi/ X, ki, and otherwise
C1(g"(y™))=0. It is easy to see that this game
satisfies the conditions of Theorem 3, and therefore
it is a centralizing aggregation game. We conclude
this section by proving a theorem from which
we deduce that the nonnegative version of this
game, that is, the case where the permissible set
D={0,00}u{(x,?¢):x>0,7 €N}, is subadditive,
and then showing by an instance that the arith-
metic game with negative entries is not necessarily
subadditive. The analysis of a scheduling game in
subsection 1.2 implies that the nonnegative version
of the arithmetic mean game is totally balanced.

The geometric mean game: each player i € N is
associated with a cost @; > 0. The cost of a coalition
is the geometric mean of the costs of its mem-
bers. For example, the cost of a coalition of three
players is the cube root of the product of the costs
that are associated with the players. Let k =2. Each
player is associated with a vector of properties (a,
1) where a is her cost. Unlike the arithmetic mean
game, here, the null vector of properties is y =(1,
0)and D={(1,0)} U {(x,2):x>0,Z €N}. Let the
aggregation function g®((x|, k1), (x2, k2)) = (x1x2,
k1 + k). Each group of k players is associated with
a vector of properties of the form (x, k) where x is
the product of the costs of the group’s players, and k
is the number of players in the group. Let C1(y°) =0
and otherwise, for any (x, k) € D, let C((x,
k)) = x'"*. The corresponding ITISSS of functions for
a given collection of m > 1 vectors of properties y™
€ D", wherey = (x;, k;) €y™,i=1, ..., m,is given
by Cu(y™) = C1 (g™ (y™)). If g™ (y™) P, then
Cilg™(y™)) = (1" x)(EL k)", that is, it is the
geometric mean of the costs of the vectors of prop-
erties in D, and otherwise C;(g™(y™))=0. As
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the conditions of Theorem 3 are satisfied, the geo-
metric mean game presented here is a centralizing
aggregation game.

As shown in the above two examples, the choice of the null
vector of properties y° depends on the definition of the game,
as the second requirement in Definition 3 must be satisfied.
In Section 2 we pose an open question regarding the total bal-
ancedness of a large family of centralizing aggregation games
that contains as private cases the arithmetic mean and the geo-
metric mean games. In this family, each player is associated
with a cost, and the characteristic function of a coalition is a
generalized mean of the costs of its members. Note that tak-
ing the characteristic function to be the maximum of a set of
numbers is one extreme special case of a generalized mean.
Its associated game, which is well known as the airport game
(see Littlechild & Owen, 1973), can easily be presented as an
aggregation game, but it is not a centralizing game as it does
not satisfy the second item of Theorem 3, that is, C;(g®(y, 2))
fory, z € D, is not strictly increasing in C(z), as required. Yet,
the airport game is easily shown to be concave and therefore
it is totally balanced, see Condition 1.

Theorem 4 A centralizing aggregation game
(N, C) is homogenous of degree 0 and non-
monotone. If, in addition, the game (N, C) is
non-negative, that is, C : 2V — ER(J;, then the
game is sub-additive.

Proof Consider any two players i, j
€ N and their vectors of properties Y,
y € D such that C;(y')<Ci(y/). By
Theorem 3, C1(y') = C1 (g, y)) < C1(g@ (',
YN<Cig?(, ¥)=Ci(), proving that
adding a player to a coalition may increase
or decrease the cost of the coalition, that
is, the game is nonmonotone. In order
to show that the game is homogenous
of degree 0, (see Definition 1), take m
copies of SCN, denoted by S!, ..., S™.
Thus, C@SY)=...=CE™)=C(S). Let »°
(ySk,k = 1, ... ,m) be the vector of proper-
ties in D that is obtained by aggregating the
vectors of properties of S Sk k=1, ..., m).
Thus, C(S) = Ci(%) = C(G5) for k=1,
.., m. The centralizing property implies that
CS) = C6%) < Cug™0%, . ¥ <
C1y®") = C(S), proving that the cost of a set
in which each player of coalition S is cloned
m times, is the same as the cost of S. Finally,
consider any two disjoint coalitions S, T CN.
Without loss of generality (w.l.0.g) suppose that
C(S) < C(T). Let y¥ (y") be the vectors of prop-
erties in D obtained by aggregating the vectors
of S (T), respectively, that is, C(S)=C;(")
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and C(T)=C,(y"). In view of the central-
izing property, C(S)=Ci;(y®) < C1(g? (",
YNSCON=CT),  where  Ci(g?05,
y)=C(S U T). As the game is nonnegative,
C(S) > 0, implying that the game is subadditive
as C(SUT)<C(©S)+ (). ]

Subaddivity is a necessary condition for a game to have
a nonempty core. The second item of Theorem 4 states
that nonnegativity is a sufficient condition for a centraliz-
ing aggregation game to be subadditive. The nonnegativity is
essential as otherwise a centralizing aggregation game might
not be subadditive, as the following example demonstrates:
consider the arithmetic mean game that has been shown in
this section to be a centralizing aggregation game, where
N={1,2,3},a1=-1,a,=a3=1, S={1} and T={2, 3},
implying that the game is not subadditive as 1/3=C(S U
T)>C(S)+C(T)=—-14+1=0. From here on we focus on
nonnegative regular games.

4 | THE AUXILIARY GAME OF A
CENTRALIZING AGGREGATION GAME

In the sequel we prove further properties that the auxiliary
game of a centralizing aggregation game, satisfies. Consider
a game (N, C), and its auxiliary game (N, 6) as defined
in Section 2. Recall that a minimal coalition S?"" of any
coalition SCN, is a minimum cost superset of S in N (see
Definition 2). For any coalition S C N, let S be one of its max-
imal size minimal coalitions. Regularity of (N, C) implies
that each player i € N is associated with a vector of proper-
ties y' € D C R* and its cost, if the player acts individually, is
Ci0) € 9{3. W.lo.g., index the players in a nondecreasing
order of their costs, that is, C; (yl) <. LCIOM.

Theorem S  For any coalition S C N of a cen-
tralizing aggregation game (N, C), there exists
a unique maximal size minimal set S. IfS={1,
., k} and Cy(y<) < Ci(y**1), then S = S. Oth-
erwise, S = {1, ... ,j} U S for some j € N\S
where Ci(yY) < C(S) < C(S\{j}). If S # N then
C(§) < Ci(?), wherep = min{i : i > j, i €
N\S}. Moreover, if§CSCTCN, then S C T.

Proof Consider first the case where S= {1,
, k} and C1(M) <C1MH ). Let y° =00,
., Y. C(S) =C1(%) < C1(¥¥), where the last
inequality follows from centralizing property
of the IIISSS of functions. Thus, by Theorem
3, C1%) < C1(gPG5, y¥) for any £>k+1,
implying that S is the unique maximal size min-
imal set of S. Otherwise, proving that Sis of the
form {1, ..., j}u S for some j € N\S is equiva-
lent to proving that there does not exist any pair

of players 1 <¢ <k <nsuch that {#, k} CN\S,
£¢SandkeS. Suppose by contradiction that
such a pair {7, k} existed. Let Ek = E\{k} and
z (w) be the vector of properties that is obtained
by aggregatlng the vectors of propertles of §
(8- Thus, CS) = C1(2) = C1(gP(w,yY). As
the players are indexed in a nondecreasing order
of their costs, £ < k, and the game is a centraliz-
ing aggregation game, see Section 3, it follows
that C,(y*) < C,(y*, y*) < C,(y*), implying that
Cig®w,g®(7Y)) < Cig®(w, ") = CB),
which means that adding player £ to S results in
a coalition that strictly contains S and its cost is
at most C (g), contradicting the assumption that
S is a maximal size minimal coalition of S.  m

Next we prove the inequalities stated in the theorem: sup-
pose by contradiction that C;(y/) > C(g\{j}). Using this
assumption with the properties of centralizing aggregation
games, implies that coalition §\{ j}. J € N\S, costs strictly
less than coalition S, contradicting the fact that S is a mini-
mal coalition for S. Thus, C;(y/) < C(g\{j}) implying that
C1(Y)) < C(S) < C(S\{j}). Finally, if S # N, then player
p, as defined in the theorem, is the lowest indexed player
of N that is not a member of S. If Ci0P) < C(S) then
C(S ui{p}) < C(S) contradicting the fact that S is a maximal
size minimal coalition of §, thus C;(") > C(S). Finally, we
prove the last assertion stating that if one set is contained in
another set, then the maximal minimal set of the first is con-
tained in the maximal minimal set of the other. According to
Theorem 1, the game (V, E’) is monotone. Thus, if S=N then
C(T) 2 C(S) = C(N), that is, T = N. Therefore, if S =
or S = S the inequality S ¢ T holds trivially. Next we prove
the case S & {S,N} : Let bg be the highest indexed player
added to S toward the formation of S while cs 1s the lowest
indexed player left out. If bg =0 then S = S and if cs=n+1,
then S = N. Thus, it remains to focus on the case that bg >0
and cg < n. Suppose by contradiction that Sis not a subset of
T. In such a case there exists a player k < by satisfying k € S,
but k & T. This means that by < cr £k < bg, which implies
that C1(%7) < C(T) < C1(*7) < C10%) < CLH™) < COS),
contradlctmg the monotonicity of the game (N, C). Therefore,
ScT.

Next we generalize the construction algorithm introduced
in Anily and Haviv (2010) to any centralizing aggregation
game. For a given such game (N, C), and for any coalition
S CN, the construction algorithm returns both the maximal
size minimal set S and the cost E(S) S # N. The algorithm is
a greedy type algorithm: for any coalition S C NV, it starts with
S =Sand gradually adds to S the lowest indexed player that
is still in N\S, as long as the cost of S does not increase by
adding the new player. As in the proof of Theorem 5, let bg be
the highest indexed player added to S toward the formation of
S while cs is the lowest indexed player left out.
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The Auxiliary Game Construction Algorithm for a cen-
tralizing aggregation game:

input: A game (N, C) and S, dCSCN.

output: Z’(S) and S.

Step 0: Initialization: S = S; 8¢ =N\S, cs =min S¢ and by = 0.
Step 1: While CS) > Ci({cs}) let S « S U {es)s
bs=cs; S¢ «— 8\{cs}; If S #@ then cg = min S¢. Otherwise,
cs=n+ 1 and goto Step 2. Endwhile.

Step 2: Let C(S) = C(S). Return S, C(S), bs, and cs.

End of Algorithm.

5 | THE MAIN THEOREM

In this section we provide a sufficient condition under which
the nonnegative core of a centralizing aggregation game is
fully characterized. For this sake, we introduce a decreasing
differences condition on the centralizing aggregation func-
tion C;"g» : D*> — R. Recall that according to Theorem 3 on
centralizing aggregation games, for any three vectors of prop-
erties w, x and y: C;(w) > C;(y) implies that C;(g®(x, w)) —
Ci1(gP(x, ) > 0.

Definition 6 The characteristic function
of a centralizing aggregation game given
by C"g®:D>-R where C;:D—R, and
g:D*>*—=D, for DCR*, x>1, is said to
have decreasing differences if C;(g?(x,
W) = Ci(g?(x, y)<Ci(w)—Cy(y) for any
vectors of properties X, w, y € D that satisfy
Ci(x) 2 Ci(w) =2 Cy(y).

The decreasing differences property has some similarity
to the concavity of real functions f:9R — R, that satisfy
fWw+A)—fy+A)<f(w)—f(y) for any A>0 and w>y.
Note that the condition C;(x) > C;(w) > C/(y) for centralizing
aggregation games, plays the role of the requirement A >0
in concavity, as it ensures that C;(g®(x, w)) > C;(w) and
C1(gP(x, y)) > Ci(y). Yet, as the following example shows,
the decreasing differences property is a much weaker con-
dition than concavity, as the function C; is not necessarily
continuous, where concavity implies that the function is con-
tinuous: consider the arithmetic mean game presented in
Section 3, but now let the permissible set be D = {(g,k) :
g € Qf and k € N}, where Q] is the set of nonnegative
rational numbers. This noncontinuous version of the game,
as its continuous nonnegative version, satisfy the decreasing
differences property.

In the proof of the main theorem, we use an alternative con-
dition for a game to be concave (see Shapley, 1971) that is
equivalent to Condition 1 in Section 1. Let S U{£} =S, for
any coalition S C N\{7¢}:

Property 1 A cooperative game (N, C) is
concave if and only if it satisfies the following

property for any S C 7 C N and forany £ € N\T:

C(Ty) = C(T) < C(S¢) = C(S).

Theorem 6 Consider a centralizing aggrega-
tion game (N, C) defined by C; and the aggre-
gation function g :D? =D, whose auxiliary
gameis (N, E). Ifthe functionC;" g® : D? - R+
satisfies the decreasing differences property
then the auxiliary game (N, Z’) is concave.

Proof Theorem 4 implies that the game (N,
C) is subadditive and nonmonotone, and by
Theorem 1, the auxiliary game (&, Z‘) is mono-
tone. The concavity of (N, C)is proved by using
Property 1, that is, by showing that E’(T,g) -
C(T) < C(Sy)— C(S) forany SCTCT,C
N. The monotonicity of o implies that both
sides of this inequality are nonnegative. More-
over, if # € T then C(T;) — C(T) = 0 and the
proof is trivial. Thus, it is left to consider the
case that T is a maximal size minimal set of T
and £ ¢ T. Next, we prove the following three
inequalities: [

1. The left-hand side of the inequality satisfies
C(Ty) - C(1) < CT U {£}) - C(T).

2. The right-hand side of the inequality satis-
fies

C(Ss) — C(S) > C(S7) — CSALLD).
3. Finally,
C(T U {£}) - C(T) < C(Sz) — CSA\L)).

1. Note that z'(T) = C(T) by definition, and
C(T,) = C(T;) < C(TU{¢}). The inequality
holds as the coalition 7' U {¢} contains T,
but it is not necessarily one of its minimal
coalitions, where ’T\,,; is.

2. Note that C(S;) = C(S;) by definition,
and C(S) < C(S,\{¢}) as coalition S,\{#}
contains coalition § but is not necessarily a
minimal coalition of S.

3. In order to prove the third item define (a) u'
as the vector of properties obtained by aggre-
gating all the vectors of properties of :S“;\ {£}
by using repeatedly the aggregation function
g, (b) u? as the vector of properties obtained
by aggregating all the vectors of properties
of T by using repeatedly the aggregation
function g, and (c) z=)" as the vector of
properties of player . Recall the assumption
that £ & T and T is a maximal size mini-
mal set of 7, implying by Theorem 5 that
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the strong inequality C(T) < C({?}) holds.
Therefore, C;(u?) < C1(z). As S, C TU{Z},
€S < CT U () < CT u (),
where the first inequality follows from
the monotonicity of the game (N, C) and
the second inequality follows from the
fact that T U {£} is possibly, but not nec-
essarily, a minimal coalition for itself.
By definition, C(S;) = Ci(g®!,2))
and C(T U {¢})) = C1(g®@?, 7). Thus,
inequality  C1(g®(u',2)) < C1 (g (u?,2)
follows. By the second subitem of
the last item of Definition 3 on cen-
tralizing functions, also the inequality
Ci(u") < C(4?) holds. It remains to show
that C1(gP@?, )= Ci(?) < Ci(g® ',
7)) — C(u"), or equivalently, that C;(g® (u?,
2)— C1(g?P ' 2)) < Ci(u*) = Ci(u'), which
follows from the decreasing differences
property of the composition C; g@ : D* —
R, completing the proof.

The conditions of Theorem 6 do not imply that the game (N,
C) is concave. In fact, none of the games presented in Section
1 is concave.

6 | EXAMPLES

A few examples of cooperative games in the areas of oper-
ations research and operations management are presented in
this section. The first is the queueing model that triggered this
research, the second is a scheduling game and the third is a
scheduling game associated with the Economic Lot Schedul-
ing Problem (ELSP). We start by presenting a simple property
that refers to ratios of nonnegative real numbers.

Q

J

Property2 Leta;, a;>0andb;,b;>0. 2+ <

J

[

. o da; a;,+a; a; a
ifand only if = < =— < £ Moreover, —
y by = beb; T b o S
ai+a; <
bi+b;

a;
b;
i
i

&

SRS

if and only if Z— <

J

6.1 | The consolidation game of parallel M/M/1
queueing systems

In the model presented in Anily and Haviv (2010) and men-
tioned in Section 1, servers cooperate in order to minimize
the long-run total congestion cost measured by the number
of customers in the system. When servers cooperate, they
form a single “super-server” whose service rate is the sum of
the individual service rates, and its stream of arrivals is the
union of the respective streams of arrivals. More precisely,
let N={1, ..., n} be a set of n M/M/1 queueing systems.
Queueing system i is associated with an exponential service

rate u; and a Poisson arrival rate A;, 4; < y;, i € N. Coop-
eration of a set S CN results in a single M/M/1 queue with
capacity u(S) = Y, _oui, and arrival rate A(S) = Y,.¢4i. The
congestion of coalition S CN is given by

o) = 28
u(s) = A(S)

The game is shown to be nonmonotone and nonconcave.
The characteristic function of its auxiliary game is proved in
Anily and Haviv (2010) to be concave by a long and tedious
proof tailored to this specific game. Theorem 6 in Section
5 proposes an alternative sufficient condition for a game to
be concave. Applying this condition on the auxiliary game,
and then invoking Theorem 2, imply that the original game is
totally balanced and the nonnegative part of its core coincides
with the core of the auxiliary game.

Next, the game is presented as a centralizing aggregation
game. Associate with each system i € N a vector of proper-
ties of size x =2, where its first entry is 4;, and the second
entry is §; = p; — A;. In addition, let, y°=(0, 0), and D =
{0,0} U {(48)|4 > 0,6 > 0} C (ER(J;)Z. Let C;(0°) =0,

ies

and for (4, §) € D\{0, 0)}, C1((4,8)) = g The aggrega-
tion function g that combines two vectors of properties in D
into one is g(2>((/11, 01), (A2, 62))= (A1 + 42, 61 + 67). Con-
sider m vectors of properties yl, ...,Y™in D where y' = (A;, 6;)
for i=1...m. Thus, g™©!, ... ,y") = (Z?il Ais 2 éi),
and C,(y', ..., YN =Ci(g™0", ..., y"). If g™, ...,
Yy #y°, then Ci(g™ 0", ... ,y™) = XL, 4/ XL, 6, and
otherwise it is zero. According to Property 2 and Theorem 3,
the game is a centralizing aggregation game.

In order to conclude the simpler alternative analysis of
the game by Theorems 6 and 2, it remains to show that
C; o g% satisfies the decreasing differences property, see
Definition 6. To this end, it is sufficient to show that
Ci1(gPW, 2)) - C1(g? W, 2)) < Ci(W) = C1(u'), where the
vectors u' = (a;, b;), W =(aj, b;), and z=(ax, by) are in D
and they satisfy C;(u’) < C;(#¥) < C|(z). This is equivalent to
showing that ZI’:Z - Z:—Z: < Z—; - Zii, which follows from
Property 3 below, where £(x) is the identity function:

Property 3 Let¢ @ Ry — RJ, be a con-
tinuous real function which is both increasing
and concave. The real numbers a;, a;, a; >0, b;,
bj. by >0 satisfy £ < ; < . Then 0 <

e(F) () <e (i) -<(3)

Proof Proving the property is equivalent to

proving that the function y(a, f) = & (;—:g) -
& (%) , where 6 >0, 6> 0 are fixed constants,

and % < %, is decreasing in =. In order to prove
the property, rewrite the function y(a, f) as a
function 7 of the two variables f and p = % :

w(f,p)=¢ (’:gi:: ) —&(p). It remains to verify
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that the function z(f, p) is decreasing in p. This
is done by checking the sign of the first partial
derivative of z with respect to p,

% (555) oz
dp opm

Mmm=< !
op 1+6p!
a+0

According to Property 2, vike %, thus by using the con-

a <0+9ﬂ_] >
14551 9¢(p)
— < o .In

addition, as the function & is increasing %(pp) > 0. The proof

is concluded as:
dx (B, p) < L) %W <0
op 1+6p7! dp
Note that Property 3 holds for the nonnegative version
of the arithmetic mean game, presented in Section 3, by

substituting the function & by &(x) = x.

cavity of the function & we deduce that

6.2 | Minimizing Makespan with Preemptions

Consider a number of production units i € N={1, ...,
n}, hereafter called players. Each player i € N owns k; > 1
machines that process a collection of jobs whose total pro-
cessing time is p; > 0, and its longest job is of duration g; € [0,
pi]. The machines of all players are assumed to be identical in
all aspects, including their speed, and they work in parallel.
Each player, if acting individually, schedules his jobs on his
machines so that their makespan is minimized. The schedules
allow for preemptions, but a job cannot be processed simul-
taneously on different machines. For the optimal solution to
the scheduling problem of a player (see Pinedo, 2002, ch. 5):
the minimum makespan of a player is the maximum between
his longest job and the ratio between his total processing time
and the number of machines that he owns. If the makespan is
determined by the longest processing time, then it is possible
that the optimal schedule on some of the machines includes
idle times. Otherwise, all machines are fully utilized during
the makespan duration. We propose a cooperative game where
players form coalitions by sharing their machines in order
to minimize the makespan of their jobs. For any coalition
SCN, let k(S) = Y,,cski be the number of machines owned
by coalition S, g(S) =max {g;:i € S}, be the duration of the
longest job in S, and p(S) = ), i be the total process-
ing time of all jobs in S. Clearly, p(S) > g(S). If g(S) =0 then
also p(S)=0. Let (N, C) be the respective game where the
characteristic function value C(S) for S € N denotes the opti-
mal makespan of running the jobs of S. More specifically,

C(S) = max {q(S), ;%} . If the players break into m dis-
joint coalitions Sy, ..., S, such that N = U?ZIS,;, then the
total cost is Z’;:l C(Sy). It is easy to see that this game is
subadditive.

The following instance shows that the makespan with
preemptions game is not concave: consider three play-

ers with the following parameters: p; =9, g =1, k; =1,
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p2=5, ¢2=0.5, ko =5, and p3=1, g3=0.01, k3=9. Let
ScT, where S={1}, T={1, 2}, and £=3. Using the
notations of Property 1, S3={1, 3}, and T3={1, 2, 3}.
Thus, C({1})=9, C{1, 2})=7/3, C({1, 3})=1, and
C({1, 2, 3})=1. The concavity property does not hold
as C(T3)—-C(T)=1-73=-4/3>C(S3) - C(S)=1-9=-8,
and therefore, Condition 1 in Section 1 cannot be
invoked. Yet, as we show below, the game is totally
balanced.

Next, we represent the game as an aggregation
game: each player i € N is initially associated with
a vector of properties of size 3, (p;, g, k;), such that
pi>qi>0 or p;=¢g;=0. Let the null vector of prop-
erties Y=, 0, 0), D={(p, ¢ k: (P=>g>0, or
qg=p=0), and k=1, 2...}, and the aggregation function
21,91, k1), (P2, 42, k2)) = (p1 + p2. max{q1, q2 }. k1 + k2).
Finally, let

i 0
Cl(p,q’k)={max{‘]’l7/k} if (q’p’k)#y

0 otherwise.

The game (N, C) is not a centralizing game though
C1EX (1,91, k), (P2, 42, ko)) € [min{ C1 (pi, g1 k) i=1,2),
max{C(p;,q;,k;):i=1,2}], as it is not strictly increasing
in Ci(p2, g2, ko) while (p1, q1, k1) is kept fixed. This can
be seen by taking, for example, (p;, g1, k1) =(5, 3, 2) and
(P2, g2, k2) = (6, b, 3), implying that C(5, 3, 2) =3, and for
b>2,Ci(6, b, 3)=>. In particular, for b € (2, 3) the value of
C1(6, b, 3)=b is strictly increasing in b where the value of
the aggregated vector, C1(g®((5, 3, 2), (6, b, 3)))=C,((11,
3, 5))=3, is not, implying that the second item in Theorem
3 is not satisfied, and Theorem 6 cannot be invoked. Thus,
we present a different approach, which is based on the next

property:

Property 4 Consider a game (N, C), where
C(S)=max {U'(S), U3(S), ..., UXS)}, L>2,
for any sequence of set functions U’, U?, ...,
UL defined on N and any coalition S C N. If each
game (N, UX) fork=1... L, is totally balanced,
then, the game (N, C) is also totally balanced.
Moreover, let k* = argmax {UY(N):k=1... L},
then the core of the game (N, UX") is a subset of
the core of the game (N, C).

Proof Let 7 = (a1, ... ,a,) be a core cost
allocation of the game (N, U*"). It is sufficient
to show that @ is a core cost allocation for the
game (N, C). The efficiency property of the cost
allocation @ holds as Y\, & = C(N) follows
from the choice of k*. For any proper coalition
S C N, the stand-alone property for (N, C) holds
as Yo < UK(S) < max{UXS) : k =
1...L}=C(). ]
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Claim 1 The makespan with preemptions
game is totally balanced, and a polytope, which
is a subset of its nonnegative core, is fully char-
acterized.

Proof The characteristic function of the
makespan game with preemptions (N, C) can be
presented as C(S) =max {U'(S), U*(S)} where
U'(S)=¢q(S)=max {¢g;:i€S}, and U*S) =
% = g’e—si The game (N, U'), is the airport
game melrel%ié)ned in Section 3, which is known
to be concave (see (Littlechild & Owen, 1973),
and therefore, it is totally balanced, and its core
is fully characterized. Moreover, the game is
monotone, implying that its core is nonnega-
tive. The characteristic function of the game (N,
U?) has the same structure as the one of the
game in Subsection 1.1, that is, it is the ratio
of the sum of non-negative real entries of the
vectors of properties by the sum of positive real
entries of the vectors of properties, and it is
defined as O for the null vector of properties.
As discussed in Subsection 1.1, a game with
this form of a characteristic function, is a cen-
tralizing aggregation game that has the decreas-
ing differences property. Therefore, according
to Theorem 6, the game (N, U?) is totally bal-
anced, and its nonnegative core is fully iden-
tified. The total balancedness of the makespan
game with preemptions thus follows from
Property 4. n

Finally, a numerical example of a game with three play-
ers, is presented: Let N={1, 2, 3} be a set of players with
the following parameters: p; =20, q; =8, k; =4, p, =30,
q»=3, ko =6, p3=40, g3 =5, and k3 =10. For each coali-
tion the characteristic function value is computed: Thus,
C{1ph=8, Cc({2ph=5, C({3h=5, C{l, 2})=8, C{l,
3D =8, C({2, 3})=5, C(N)=8.According to Property 4,
as C(N)=U'(N)=8, the duration of the longest job in
N, the core of (N, U') is a subset of the core of (N,
C). In view of the concavity of the game (N, U'), its
core is the polytope defined by the 3! extreme points,
where each extreme point is the marginal contribution
vector for a certain order of the players (see Shapley,
1971). The characteristic function values of the game (N,
Ul are: U'({1H=U'{1, 2)=U"'({1, 3)=U'WN)=8,
U'((2)h)=3,U'({3})=U"'({2,3}) =5. Accordingly, the con-
vex hull of the following different points (8, 0, 0), (5, 3, 0),
(3,3,2), (3,0, 5), is the core of (N, U'), which is a subset of
the core of (N, O).

By increasing p; to 100 and leaving the other parame-
ters intact, we get a different game (N, C/) whose char-
acteristic function values are: C'({1})=25, C' ({2})=C
((3h=C ({2.3})=5.C ({1.2)h=13,C({1,3h=10,C

(N)=8.5 According to Property 4, as C' (N)=U*(N), the
core of (N, U?) is a subset of the core of the game (N, ).
The characteristic function of the game (N, U?) is defined
by U({1}) =25, U*({2}) =5, U*({3})) =4, U*({1,2}) =13,
U*({1, 3})=10, U*({2, 3})=4.375, U>(N)=8.5. (N, U?)
is a centralizing aggregation game that has the decreasing
differences property. According to Theorem 6, the auxiliary
game (N, U?) is concave and its core coincides with the non-
negative core of (N, UZ)J he valu’js of the garacteristic
function of the game (JYLUZ) are: U2£i2}) = Uz({,%z3}) =
4375, U*({3}) = 4, U*({1,2}) = U>({1,3}) = U*(N) =
U2({1}) = 8.5. The core of the concave game (N, U?)
is defined by the convex hull of the extreme points of
the polytope, namely: (8.5, 0, 0), (4.125, 4.375, 0), (4.5,
0, 4), (4.125, 0.375, 4), which coincides with the nonneg-
ative core of (N, U?) and is a subset of the core the
game (N, ).

As a side comment note that similarly to the proof
that the game (N, U?) satisfies the conditions required
by Theorem 6, it is possible to show that also the
non-negative weighted mean game (N, U), where each ele-
ment ;>0, 1<i<n, is associated with a weight w; >0,

and the characteristic function is U(S) = ZZES—WWG for any

ieS"i
S C N, satisfies the same conditions, and therefore is totally
balanced.

6.3 | The Common Cycle policy for the ELSP

The multiitem ELSP, introduced in Rogers (1958), considers
the deterministic continuous time problem of producing a set
N={1, ..., n} of products on a single machine. Each product
i € N is associated with its constant demand rate d;, its produc-
tion rate p;, its setup cost k; for initiating a production run, and
its inventory holding cost rate of / "™¢ The machine can pro-
duce at most one product at a time, implying that there exists
a feasible solution for the problem if and only if Y, p; < 1,
where p; =d;/p;, fori=1, ..., n, as otherwise, the machine’s
capacity is insufficient to meet the demands. The ELSP is the
problem of minimizing the long-run average setup and inven-
tory holding costs of scheduling the products on the machine
so that the demands of all products are met on time, that is,
neither stockouts nor backlogging are allowed. Setup times
are assumed to be zero. More general variants of the ELSP
have been considered in the literature, but, here, we focus on
this simplest basic version. The ELSP is a natural extension of
the simple Economic Order Quantity problem, but the restric-
tion of producing at most one item at a time, makes the task of
solving the ELSP a real challenge. Researchers have focused
on finding optimal policies for the ELSP within given fami-
lies of structured forms of policies. The family of policies that
consists of the simplest form is called the family of cyclic poli-
cies, where each product is produced every T; units of time.
Finding the optimal policy within this class is equivalent to
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solving the following problem

i Li

n
. k; . .
min {Z ?' + h;T; : there exists a feasible
1

cyclic policy (Ti);lzl} 2)

where h; = O.Sh;d;(l — pi). But even this restricted version
with arbitrary cyclic schedules, has been proved in Gallego
and Shaw (1997) to be NP-hard. If the problem is further
restricted to a cyclic policy where all the products share the
same cycle time, then the problem becomes easy. The opti-
mal policy of this type, introduced in Hanssmann (1962) is
called the Common Cycle (CC) policy: According to the CC
policy, the products of any coalition S CN share the same
cycle length so that the long-run average total of its mem-
bers is minimized. Next, we show that the cooperative game
whose characteristic function returns the long-run average
cost of the CC policy for any coalition S C N, is not balanced
as it is a super-additive cost game. For this sake let, for any
coalition SCN, K(S) = Y,c¢ki and H(S) = Y. _ch;. The
optimal common cycle time of coalition SCAN is given by

TCC(S) = % implying that the cost of the coalition is

CCC(S) = VK(S)H(S).

Claim2 CCC(S) > CCC(S) + CCC(S,) for any
coalition S C N, and any two disjoint coalitions
S; and S, that satisfy S=S; U S,.

Proof The proof is immediate as in C¢(S)
all products in the union S=S§; U §, are
required to have the same cycle time, where in
CCC(S)) + CCC(S,) the requirement is relaxed so
that all products in S; need to have identical
cycle times and all products in S, need to have
identical cycle times. n

In view of Claim 2, unless all ratios {k;/h;}i=1, .., are
equal, the core of the ELSP game is empty. Researchers have
proposed alternative techniques that generate cost allocations
for unbalanced games as, for example: (a) the y core—the
efficiency constraint is relaxed, that is, the total cost allocated
to all players is yCSC(N) for 0 <y < 1, where ¥ is as large as
possible (see Faigle & Kern, 1993); (b) the least core—where
all the stand-alone constraints are relaxed, so that each coali-
tion S C N is allocated a cost that is bounded from above by
the cost of the coalition plus a constant z> 0, where z is as
small as possible (see Maschler, Peleg & Shapley, 1979). Such
directions are beyond the scope of this paper. Below we asso-
ciate an alternative game to the CC policy, called the CC setup
frequency game, a game that satisfies the sufficient condition
proposed in this paper.

Suppose that in addition to the products’ dependent setup
and holding costs, the production facility incurs a fixed cost
Ky at each initialization of a common cycle. The fixed cost
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Ky covers costs involved in the setup procedures carried out
before the initialization of a common cycle. For accounting
purposes, the management asks to find a stable cost allocation
of Ko/T°C(N) among the products that reflects the effect of
each product on the frequency of the cycle setups. This goal
is achieved by investigating the core of the cooperative game

¢ feoy — Ko _ KoVHE)
(N, CY, where C/(S) T VR for any S C N. For
simplicity, let Ko = 1.

Claim 3 The CC setup frequency game is
totally balanced and its nonnegative core is fully
identified.

Proof  The characteristic function of the game
(N, CY is of the form C/'(S) = \/H(S)/K(S)
for any S C N. Recall from Section 1.1 that a set
function of the form H(S)/K(S) is a centralizing
aggregation function. In view of Property 3, as
the square root function is strictly increasing and
concave, the conditions of Theorem 6 are i:itis—
fied, implying that the auxiliary game (N, Cf) is
concave. According to Theorem 2, the nonneg-
ative core of (N, C) coincides with the core of
its auxiliary game (N, Cf), whose exact form is
known. n

The game (N, C') is not concave, as the following example
shows: consider an ELSP instance with n=3 products,
where h; =9, ky=1, hh=ky;=5, h3=1, and k3=9. Thus,
(1)) = O/1 = 3, I({1,2)) = \/14/6 = 1.528,
Cc'({1,3})) = 4/10/10 = 1, and C'(N) = 4/15/15 =
1. In order to rebut Property 1 on this example, we use
S=1{1}, T={1,2} and # =3, and get that C'({N}) — C ({1,
2)=1-1.528=-0.528 > Cf({1,3}) - Cf({1}) =1-3=-2.

7 | CONCLUSIONS

The determination of whether a given cooperative game has
a nonempty core, let alone identifying core cost allocations,
is a challenging task because of the exponential size of the
problem. Thus, the identification of general sufficient condi-
tions for proving the total balancedness of games may greatly
simplify this task. In this article we add a new sufficient
condition to this body of research: a regular centralizing
aggregation game that has the decreasing variation property
is totally balanced and, its nonnegative part of the core is
fully characterized. Applications in queueing and scheduling
games are presented.

An interesting open question deals with cooperative games
where each of the players is associated with a positive
score and the characteristic function is one of the vari-
ous generalized mean functions. More specifically, let (aj,
.., ay) be a vector of positive scores, and let p be a
real number. The generalized mean that is associated with
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1
p#0is My(ay, ... ,a) = (izz;laf)", where M, is the

arithmetic mean, M_,(ay, ...,a,)=min{ay, ...,a,} and

My(ay, ...,a,)=max {ay, ...,a,}.
My is defined as the geometric mean, that is,
1
My(ay, ... ,a,) = (H:’zla,-)z. It is easy to show that a game

with a characteristic function that is the minimum score of a
coalition, may have an empty core. The game whose charac-
teristic function is the maximum score is the concave airport
game discussed in Section 3, which is totally balanced and
its core is fully characterized. The nonnegative arithmetic
mean game satisfies the new sufficient condition, and there-
fore it is totally balanced and its nonnegative core is fully
characterized.

A generalized mean for — oo <p < oo is a special case of
a weighted generalized mean, where the scores may have
nonequal weights. Suppose that player i is associated with
a score «; and a weight w; =w;(N) > 0, such that Zier,- =
1. A weighted generalized mean for the scores in N is
My(@w), ... s (@w) = (X, wa?)'"” for p#0, and
Mo((aywy), ... . (aywy)) = L . A game whose charac-
teristic function for S C N is a weighted generalized mean of
its scores, is defined similarly by using the weights w;(S) for
i € S, while calculating the cost of S, where w;(S) = %&W/
implying that ), w;(S) = 1. An interesting question jis to
identify the weighted generalized mean games that are totally
balanced.
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